Tsun-Kong Sham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8104491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7, 13638.	5.8	1,521
2	Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry, 2018, 10, 974-980.	6.6	781
3	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .	1.6	719
4	Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nature Communications, 2019, 10, 4936.	5.8	371
5	Air-stable Li ₃ InCl ₆ electrolyte with high voltage compatibility for all-solid-state batteries. Energy and Environmental Science, 2019, 12, 2665-2671.	15.6	345
6	Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy and Environmental Science, 2013, 6, 2900.	15.6	335
7	Boosting CO ₂ Electroreduction to CH ₄ via Tuning Neighboring Single-Copper Sites. ACS Energy Letters, 2020, 5, 1044-1053.	8.8	326
8	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
9	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 16427-16432.	7.2	232
10	Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3769-3776.	1.5	228
11	Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2018, 10, 31240-31248.	4.0	207
12	A Novel Organic "Polyurea―Thin Film for Ultralongâ€Life Lithiumâ€Metal Anodes via Molecularâ€Layer Deposition. Advanced Materials, 2019, 31, e1806541.	11.1	204
13	LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy and Environmental Science, 2013, 6, 1521.	15.6	199
14	Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence. Nature, 1993, 363, 331-334.	13.7	193
15	Cobaltâ€Doped SnS ₂ with Dual Active Centers of Synergistic Absorption atalysis Effect for Highâ€5 Loading Liâ€5 Batteries. Advanced Functional Materials, 2019, 29, 1806724.	7.8	186
16	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	5.8	175
17	Tuning the electronic behavior of Au nanoparticles with capping molecules. Applied Physics Letters, 2002, 81, 736-738.	1.5	165
18	Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nature Communications, 2021, 12, 1580.	5.8	162

#	Article	IF	CITATIONS
19	Rational Design of Atomicâ€Layerâ€Deposited LiFePO ₄ as a Highâ€Performance Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6472-6477.	11.1	161
20	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	4.5	157
21	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	8.8	154
22	Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018, 9, 4614.	5.8	153
23	On rechargeability and reaction kinetics of sodium–air batteries. Energy and Environmental Science, 2014, 7, 3747-3757.	15.6	150
24	L-edge x-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4delements. Physical Review B, 1985, 31, 1888-1902.	1.1	144
25	Defect-Rich Crystalline SnO ₂ Immobilized on Graphene Nanosheets with Enhanced Cycle Performance for Li Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 22149-22156.	1.5	138
26	Charge redistribution and electronic behavior in a series of Au-Cu alloys. Physical Review B, 1994, 49, 1647-1661.	1.1	137
27	Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. Journal of Materials Chemistry, 2012, 22, 20170.	6.7	136
28	An Airâ€Stable and Dendriteâ€Free Li Anode for Highly Stable Allâ€Solidâ€State Sulfideâ€Based Li Batteries. Advanced Energy Materials, 2019, 9, 1902125.	10.2	133
29	Synthesis and Synchrotron Light-Induced Luminescence of ZnO Nanostructures:Â Nanowires, Nanoneedles, Nanoflowers, and Tubular Whiskers. Journal of Physical Chemistry B, 2005, 109, 3120-3125.	1.2	130
30	Enhanced Performance of P2â€Na _{0.66} (Mn _{0.54} Co _{0.13} Ni _{0.13})O ₂ Cathode for Sodiumâ€Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. Advanced Functional Materials, 2017, 27, 1701870.	7.8	128
31	Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. ACS Applied Materials & Interfaces, 2018, 10, 39794-39801.	4.0	126
32	Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes. Journal of Physical Chemistry C, 2013, 117, 20260-20267.	1.5	123
33	Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy and Environmental Science, 2015, 8, 1450-1455.	15.6	120
34	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nature Catalysis, 2020, 3, 14-22.	16.1	120
35	Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as Highâ€Performance Cathode. Advanced Materials, 2017, 29, 1703764.	11.1	119
36	Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nature Catalysis, 2022, 5, 251-258.	16.1	118

#	Article	IF	CITATIONS
37	Electronâ€Deficient Cu Sites on Cu ₃ Ag ₁ Catalyst Promoting CO ₂ Electroreduction to Alcohols. Advanced Energy Materials, 2020, 10, 2001987.	10.2	117
38	Soft X-ray XANES studies of various phases related to LiFePO4 based cathode materials. Energy and Environmental Science, 2012, 5, 7007.	15.6	116
39	Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 3535.	1.3	113
40	Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Small, 2020, 16, e2003096.	5.2	110
41	Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states. Applied Physics Letters, 2006, 89, 213109.	1.5	105
42	Charge redistribution in Au-Ag alloys from a local perspective. Physical Review B, 1992, 45, 8924-8928.	1.1	102
43	Interaction between Pt nanoparticles and carbon nanotubes – An X-ray absorption near edge structures (XANES) study. Chemical Physics Letters, 2007, 437, 229-232.	1.2	98
44	Electronic structure and optical properties of silicon nanowires: A study using x-ray excited optical luminescence and x-ray emission spectroscopy. Physical Review B, 2004, 70, .	1.1	96
45	Origin of Superionic Li ₃ Y _{1–<i>x</i>} In _{<i>x</i>} Cl ₆ Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.	4.5	94
46	Surface aging at olivine LiFePO ₄ : a direct visual observation of iron dissolution and the protection role of nano-carbon coating. Journal of Materials Chemistry A, 2013, 1, 1579-1586.	5.2	93
47	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie, 2019, 131, 16579-16584.	1.6	92
48	Unveiling the Nature of Pt Singleâ€Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Small, 2021, 17, e2007245.	5.2	91
49	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	4.6	90
50	Zeroâ€Thermal Quenching of Mn ²⁺ Red Luminescence via Efficient Energy Transfer from Eu ²⁺ in BaMgP ₂ O ₇ . Advanced Optical Materials, 2019, 7, 1901187.	3.6	89
51	Three-Dimensional Nanostructured Air Electrode for Sodium–Oxygen Batteries: A Mechanism Study toward the Cyclability of the Cell. Chemistry of Materials, 2015, 27, 3040-3047.	3.2	86
52	Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1654-1661.	4.0	85
53	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ€ Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	State 11.1	82
54	X-ray Excited Optical Luminescence Studies of ZnO and Eu-Doped ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 10194-10200.	1.5	81

#	Article	IF	CITATIONS
55	A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nature Communications, 2021, 12, 6806.	5.8	81
56	Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. Journal of Materials Chemistry A, 2014, 2, 2306.	5.2	78
57	Commissioning and performance of the variable line spacing plane grating monochromator beamline at the Canadian Light Source. Review of Scientific Instruments, 2007, 78, 083109.	0.6	75
58	Tailoring interactions of carbon and sulfur in Li–S battery cathodes: significant effects of carbon–heteroatom bonds. Journal of Materials Chemistry A, 2014, 2, 12866.	5.2	75
59	γ-Fe ₂ O ₃ @CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy. Chemistry of Materials, 2017, 29, 3499-3506.	3.2	73
60	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	5.8	72
61	Observation of Single Tin Dioxide Nanoribbons by Confocal Raman Microspectroscopy. Journal of Physical Chemistry C, 2007, 111, 18839-18843.	1.5	71
62	Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by <i>In Situ</i> and <i>Operando</i> Synchrotron X-ray Analytical Techniques. Chemistry of Materials, 2020, 32, 7019-7027.	3.2	69
63	Commissioning of the Spherical Grating Monochromator Soft X-ray Spectroscopy Beamline at the Canadian Light Source. AIP Conference Proceedings, 2007, , .	0.3	68
64	Electronic structure of TiO2 nanotube arrays from X-ray absorption near edge structure studies. Journal of Materials Chemistry, 2009, 19, 6804.	6.7	68
65	Preliminary Commissioning and Performance of the Soft X-ray Micro-characterization Beamline at the Canadian Light Source. AIP Conference Proceedings, 2010, , .	0.3	66
66	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampereâ€Level Electrosynthesis of Formate from CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 25741-25745.	7.2	66
67	Nano-scale chemical imaging of a single sheet of reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 14622.	6.7	64
68	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	10.2	64
69	Electronic Structure of Graphdiyne Probed by X-ray Absorption Spectroscopy and Scanning Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2013, 117, 5931-5936.	1.5	62
70	Synchrotronâ€Based Xâ€ray Absorption Fine Structures, Xâ€ray Diffraction, and Xâ€ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries. Small Methods, 2018, 2, 1700341.	4.6	62
71	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â^2} /20 mAh cm ^{â^2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	10.2	62
72	Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31786-31793.	4.0	58

#	Article	IF	CITATIONS
73	Bismuth Oxyhydroxide-Pt Inverse Interface for Enhanced Methanol Electrooxidation Performance. Nano Letters, 2020, 20, 7751-7759.	4.5	58
74	Origin of luminescence fromGa2O3nanostructures studied using x-ray absorption and luminescence spectroscopy. Physical Review B, 2007, 75, .	1.1	57
75	Immobilization of RuO ₂ on Carbon Nanotube: An X-ray Absorption Near-Edge Structure Study. Journal of Physical Chemistry C, 2009, 113, 10747-10750.	1.5	56
76	Size Effect of Au Nanoparticles on TiO ₂ Crystalline Phase of Nanocomposite Thin Films and Their Photocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 6554-6560.	1.5	55
77	A bifunctional solid state catalyst with enhanced cycling stability for Na and Li–O ₂ cells: revealing the role of solid state catalysts. Energy and Environmental Science, 2017, 10, 286-295.	15.6	55
78	Ultraâ€Bright and Stable Pure Blue Lightâ€Emitting Diode from O, N Coâ€Doped Carbon Dots. Laser and Photonics Reviews, 2021, 15, 2000412.	4.4	54
79	TiSi ₂ O _x Coated N-Doped Carbon Nanotubes as Pt Catalyst Support for the Oxygen Reduction Reaction in PEMFCs. Journal of Physical Chemistry C, 2013, 117, 15457-15467.	1.5	53
80	Intrinsic Enzyme-like Activities of Cerium Oxide Nanocomposite and Its Application for Extracellular H ₂ O ₂ Detection Using an Electrochemical Microfluidic Device. ACS Omega, 2020, 5, 11883-11894.	1.6	53
81	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solidâ€ S tate Na Metal Batteries. Advanced Functional Materials, 2020, 30, 2001118.	7.8	53
82	Timeâ€Resolved Synchrotron Radiation Excited Optical Luminescence: Lightâ€Emission Properties of Siliconâ€Based Nanostructures. ChemPhysChem, 2007, 8, 2557-2567.	1.0	52
83	Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures. Journal of Physical Chemistry C, 2012, 116, 16251-16258.	1.5	51
84	High Tap Density Co and Ni Containing P2â€Na _{0.66} MnO ₂ Buckyballs: A Promising High Voltage Cathode for Stable Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801898.	7.8	50
85	Electronic structure and luminescence center of blue luminescent carbon nanocrystals. Chemical Physics Letters, 2009, 474, 320-324.	1.2	49
86	Origin of High Ionic Conductivity of Scâ€Đoped Sodiumâ€Rich NASICON Solidâ€State Electrolytes. Advanced Functional Materials, 2021, 31, 2102129.	7.8	49
87	Observation of lithiation-induced structural variations in TiO ₂ nanotube arrays by X-ray absorption fine structure. Journal of Materials Chemistry A, 2015, 3, 412-419.	5.2	48
88	Regulated lithium plating and stripping by a nano-scale gradient inorganic–organic coating for stable lithium metal anodes. Energy and Environmental Science, 2021, 14, 4085-4094.	15.6	48
89	M3,2â€edge xâ€ray absorption nearâ€edge structure spectroscopy: An alternative probe to the L3,2â€edge nearâ€edge structure for the unoccupied densities of d states of 5d metals. Journal of Applied Physics, 1996, 79, 7134-7138.	1.1	47
90	Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials, 2020, 30, 238-249.	9.5	46

#	Article	IF	CITATIONS
91	Sizeâ€Mediated Recurring Spinel Subâ€nanodomains in Li―and Mnâ€Rich Layered Cathode Materials. Angewandte Chemie - International Edition, 2020, 59, 14313-14320.	7.2	46
92	Effects of in situ vacuum annealing on the surface and luminescent properties of ZnS nanowires. Applied Physics Letters, 2005, 86, 263115.	1.5	45
93	Utilizing the full capacity of carbon black as anode for Na-ion batteries via solvent co-intercalation. Nano Research, 2017, 10, 4378-4387.	5.8	45
94	Chemicalâ€ŧoâ€Electricity Carbon: Water Device. Advanced Materials, 2018, 30, e1707635.	11.1	45
95	Construction of Single-Atom Platinum Catalysts Enabled by CsPbBr ₃ Nanocrystals. ACS Nano, 2021, 15, 13129-13139.	7.3	44
96	Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains. Applied Physics Letters, 2001, 79, 1673-1675.	1.5	42
97	Electronic behaviour of Au-Pt alloys and the 4f binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies. AlP Advances, 2018, 8, .	0.6	41
98	A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries. Journal of Materials Chemistry A, 2020, 8, 278-286.	5.2	41
99	CuO nanorods as a laccase mimicking enzyme for highly sensitive colorimetric and electrochemical dual biosensor: Application in living cell epinephrine analysis. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111228.	2.5	41
100	New Insights into the Highâ€Performance Black Phosphorus Anode for Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2101259.	11.1	41
101	Resonant inelastic x-ray scattering at the CeL3edge ofCePO4andCeO2: Implications for the valence ofCeO2and related phenomena. Physical Review B, 2005, 72, .	1.1	40
102	Calcination-Induced Phase Transformation and Accompanying Optical Luminescence of TiO ₂ Nanotubes: An X-ray Absorption Near-Edge Structures and X-ray Excited Optical Luminescence Study. Journal of Physical Chemistry C, 2010, 114, 21353-21359.	1.5	39
103	Surface reactivity of Si nanowires. Journal of Applied Physics, 2001, 89, 6396-6399.	1.1	38
104	Nanoscale stabilization of Li–sulfur batteries by atomic layer deposited Al2O3. RSC Advances, 2014, 4, 27126.	1.7	38
105	Observation of Surface/Defect States of SnO ₂ Nanowires on Different Substrates from X-ray Excited Optical Luminescence. Crystal Growth and Design, 2012, 12, 397-402.	1.4	37
106	Hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers as a dual-function enzyme with pH-switchable peroxidase and catalase mimic activities for cancer cell detection and enhanced photodynamic therapy. Chemical Engineering Journal, 2021, 417, 129134.	6.6	37
107	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	10.2	36
108	The Origin and Dynamics of Soft Xâ€Rayâ€Excited Optical Luminescence of ZnO. ChemPhysChem, 2010, 11, 3625-3631.	1.0	34

#	Article	IF	CITATIONS
109	Structural variation and water adsorption of a SnO2 coated carbon nanotube: a nanoscale chemical imaging study. Journal of Materials Chemistry, 2011, 21, 5944.	6.7	34
110	Atomic Layer Deposited Nonâ€Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials, 2017, 27, 1606662.	7.8	34
111	Tracking the Interface of an Individual ZnS/ZnO Nano-Heterostructure. Journal of Physical Chemistry C, 2012, 116, 10375-10381.	1.5	33
112	Nanostructured CdS prepared on porous silicon substrate: Structure, electronic, and optical properties. Journal of Applied Physics, 2002, 91, 6038-6043.	1.1	32
113	Optical emission of biaxial ZnO–ZnS nanoribbon heterostructures. Journal of Chemical Physics, 2009, 130, 084707.	1.2	32
114	Electronic Structures and Optical Properties of 6H- and 3C-SiC Microstructures and Nanostructures from X-ray Absorption Fine Structures, X-ray Excited Optical Luminescence, and Theoretical Studies. Journal of Physical Chemistry C, 2010, 114, 6966-6975.	1.5	32
115	Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 24281-24288.	5.2	32
116	Selective atomic layer deposition of RuO _x catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. Journal of Materials Chemistry A, 2018, 6, 24397-24406.	5.2	31
117	Understanding the Critical Role of Binders in Phosphorus/Carbon Anode for Sodiumâ€ion Batteries through Unexpected Mechanism. Advanced Functional Materials, 2020, 30, 2000060.	7.8	29
118	Elucidating the Many-Body Effect and Anomalous Pt and Ni Core Level Shifts in X-ray Photoelectron Spectroscopy of Pt–Ni Alloys. Journal of Physical Chemistry C, 2020, 124, 2313-2318.	1.5	29
119	Influence of sample oxidation on the nature of optical luminescence from porous silicon. Applied Physics Letters, 2000, 77, 498-500.	1.5	28
120	Biaxial ZnOâ^'ZnS Nanoribbon Heterostructures. Journal of Physical Chemistry C, 2009, 113, 4755-4757.	1.5	28
121	Electronic structure of Au–Ti intermetallics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 2153-2157.	0.9	27
122	Calcium silicate-based drug delivery systems. Expert Opinion on Drug Delivery, 2017, 14, 215-228.	2.4	27
123	Insight into Ion Diffusion Dynamics/Mechanisms and Electronic Structure of Highly Conductive Sodium-Rich Na _{3+<i>x</i>} La _{<i>x</i>} Zr _{2–<i>x</i>} Si ₂ PO ₁₂ (0 ≤i>x â‰Ф.5) Solid-State Electrolytes. ACS Applied Materials & amp: Interfaces. 2021, 13, 13132-13138	4.0 3.	27
124	Atomic layer deposited aluminium phosphate thin films on N-doped CNTs. RSC Advances, 2013, 3, 4492.	1.7	26
125	2D XANES–XEOL Spectroscopy Studies of Morphology-Dependent Phase Transformation and Corresponding Luminescence from Hierarchical TiO ₂ Nanostructures. Chemistry of Materials, 2015, 27, 3021-3029.	3.2	26
126	Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a Highâ€Performance Anode for Lithium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600369.	1.9	26

#	Article	IF	CITATIONS
127	Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30763-30773.	4.0	26
128	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nature Communications, 2019, 10, 4807.	5.8	26
129	Highlyâ€Exposed Singleâ€Interlayered Cu Edges Enable Highâ€Rate CO ₂ â€ŧoâ€CH ₄ Electrosynthesis. Advanced Energy Materials, 2022, 12, .	10.2	26
130	Photoluminescence imaging of porous silicon using a confocal scanning laser macroscope/microscope. Applied Physics Letters, 1995, 66, 2321-2323.	1.5	25
131	Anisotropic x-ray absorption effects in the optical luminescence yield of ZnO nanostructures. Applied Physics Letters, 2006, 89, 093118.	1.5	25
132	Photonâ€In/Photonâ€Out Spectroscopic Techniques for Materials Analysis: Some Recent Developments. Advanced Materials, 2014, 26, 7896-7901.	11.1	25
133	Effect of ferrous ion concentration on the kinetics of radiation-induced iron-oxide nanoparticle formation and growth. Physical Chemistry Chemical Physics, 2017, 19, 695-708.	1.3	25
134	Visible Emission from GeO ₂ Nanowires: Site-Specific Insights via X-ray Excited Optical Luminescence. Journal of Physical Chemistry C, 2012, 116, 14163-14169.	1.5	24
135	Fast Charging All Solid‣tate Lithium Batteries Enabled by Rational Design of Dual Verticallyâ€Aligned Electrodes. Advanced Functional Materials, 2020, 30, 2005357.	7.8	24
136	CuO/Cu-MOF nanocomposite for highly sensitive detection of nitric oxide released from living cells using an electrochemical microfluidic device. Mikrochimica Acta, 2021, 188, 240.	2.5	24
137	Fabrication of thiol-capped Pd nanoparticles: An electrochemical method. Applied Physics Letters, 2003, 82, 1778-1780.	1.5	23
138	Determination of the local structure of luminescent sites in ZnS nanowires using x-ray excited optical luminescence. Applied Physics Letters, 2005, 87, 253105.	1.5	23
139	VLS-PGM Beamline at the Canadian Light Source. AIP Conference Proceedings, 2007, , .	0.3	23
140	Microbeam X-ray analysis of Ce3+/Ce4+ in Ti-rich minerals: A case study with titanite (sphene) with implications for multivalent trace element substitution in minerals. American Mineralogist, 2013, 98, 110-119.	0.9	23
141	Unfolding the Anatase-to-Rutile Phase Transition in TiO ₂ Nanotubes Using X-ray Spectroscopy and Spectromicroscopy. Journal of Physical Chemistry C, 2016, 120, 22079-22087.	1.5	23
142	Medium-energy microprobe station at the SXRMB of the CLS. Journal of Synchrotron Radiation, 2017, 24, 333-337.	1.0	23
143	Tracking the Local Effect of Fluorine Self-Doping in Anodic TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2016, 120, 4623-4628.	1.5	22
144	Transport Properties of a Molybdenum Disulfide and Carbon Dot Nanohybrid Transistor and Its Applications as a Hg ²⁺ Aptasensor. ACS Applied Electronic Materials, 2020, 2, 635-645.	2.0	22

#	Article	IF	CITATIONS
145	Atomic Layer Deposition of Hierarchical CNTs@FePO ₄ Architecture as a 3D Electrode for Lithiumâ€ion and Sodiumâ€ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600468.	1.9	21
146	2D XAFS–XEOL Mapping of Ga _{1–<i>x</i>} Zn _{<i>x</i>} N _{1–<i>x</i>} O _{<i>x</i>} Nanostructured Solid Solutions. Journal of Physical Chemistry C, 2011, 115, 20507-20514.	1.5	20
147	The Effect of Thermal Oxidation on the Luminescence Properties of Nanostructured Silicon. Small, 2012, 8, 2371-2380.	5.2	20
148	Loading across the Periodic Table: Introducing 14 Different Metal Ions To Enhance Metal–Organic Framework Performance. ACS Applied Materials & Interfaces, 2018, 10, 30296-30305.	4.0	20
149	Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure. Nano Energy, 2019, 66, 104177.	8.2	20
150	Synchrotron x-ray fluorescence and secondary ion mass spectrometry in tree ring microanalysis: applications to dendroanalysis. X-Ray Spectrometry, 2001, 30, 338-341.	0.9	19
151	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere‣evel Electrosynthesis of Formate from CO ₂ . Angewandte Chemie, 2021, 133, 25945-25949.	1.6	19
152	Multichannel detection x-ray absorption near edge structures study on the structural characteristics of dendrimer-stabilized CdS quantum dots. Journal of Applied Physics, 2001, 90, 2755-2759.	1.1	18
153	Pressure induced structural transformations of anatase TiO ₂ nanotubes probed by Raman spectroscopy and synchrotron X-ray diffraction. RSC Advances, 2016, 6, 76142-76150.	1.7	18
154	Phase Evolution of a Prenucleator for Fast Li Nucleation in Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 2001191.	10.2	17
155	Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2020, 32, 1272-1280.	3.2	17
156	Magnetic interactions and electronic states in superconducting and nonsuperconducting ruthenocuprates. Physical Review B, 2002, 65, .	1.1	15
157	Dense and optical transparent CdWO4 films by sol-gel processing for scintillation applications. Journal of Materials Research, 2007, 22, 1527-1536.	1.2	15
158	Characterization of Tribofilms Generated from Serpentine and Commercial Oil Using X-ray Absorption Spectroscopy. Tribology Letters, 2013, 50, 287-297.	1.2	15
159	Nitridation Temperature Effects on Electronic and Chemical Properties of (Ga _{1–<i>x</i>} Zn _{<i>x</i>})(N _{1–<i>x</i>} O _{<i>x</i>}) Solid Solution Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 20332-20342.	1.5	15
160	2D XAFS-XEOL Spectroscopy – Some recent developments. Journal of Physics: Conference Series, 2013, 425, 132009.	0.3	15
161	Designing High-Performance Nanostructured P2-type Cathode Based on a Template-free Modified Pechini Method for Sodium-Ion Batteries. ACS Omega, 2018, 3, 8309-8316.	1.6	15
162	Exploring tarnished daguerreotypes with synchrotron light: XRF and μ-XANES analysis. Heritage Science, 2018, 6, .	1.0	15

#	Article	IF	CITATIONS
163	Oxidation of Mg adsorbed on Ru(001): A photoemission study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2367-2370.	0.9	14
164	Electrochemical route for the fabrication of alkanethiolate-capped gold nanoparticles. Applied Physics Letters, 2003, 82, 1470-1472.	1.5	14
165	Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence using Synchrotron Light Pulses at SRC, APS, and CLS. AIP Conference Proceedings, 2007, , .	0.3	14
166	Role of defect electronic states in the ferromagnetism in graphite. Physical Review B, 2012, 85, .	1.1	14
167	Antimonyâ€Functionalized Phosphineâ€Based Photopolymer Networks. Angewandte Chemie - International Edition, 2018, 57, 13252-13256.	7.2	13
168	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 37116-37127.	4.0	13
169	Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 7508-7515.	2.4	13
170	Lithium Vacancyâ€Tuned [CuO ₄] Sites for Selective CO ₂ Electroreduction to C ₂₊ Products. Small, 2022, 18, e2106433.	5.2	13
171	Photoemission studies of the hydrogenated siliconâ€gold interface. Applied Physics Letters, 1990, 57, 37-39.	1.5	12
172	Time-resolved x-ray-excited optical luminescence characterization of one-dimensional Si–CdSe heterostructures. Applied Physics Letters, 2006, 89, 243102.	1.5	12
173	Fine structure of unoccupied Agdstates near the Fermi level in Ag and AgPd studied by high-resolution partial Auger yield spectroscopy at the AgL3edge. Physical Review B, 2003, 67, .	1.1	11
174	Preferable orientation of turbostratic BN basal planes from an x-ray absorption study. Journal of Materials Research, 2006, 21, 147-152.	1.2	11
175	Microfluidic Synthesis and Angiogenic Activity of Ginsenoside Rg ₁ -Loaded PPF Microspheres. ACS Biomaterials Science and Engineering, 2016, 2, 1872-1882.	2.6	11
176	Electronic structure of nanopolycrystalline pulsed laser deposited LaB6 films and single crystals: The boron perspective. Journal of Applied Physics, 2010, 107, .	1.1	10
177	Tracking Drug Loading Capacities of Calcium Silicate Hydrate Carrier: A Comparative X-ray Absorption Near Edge Structures Study. Journal of Physical Chemistry B, 2015, 119, 10052-10059.	1.2	10
178	Time-resolved X-ray excited optical luminescence using an optical streak camera. Journal of Physics: Conference Series, 2013, 425, 092006.	0.3	9
179	X-ray Absorption Near-Edge Structure Spectroscopy of a Stable 6-Oxoverdazyl Radical and Its Diamagnetic Precursor. Journal of Physical Chemistry A, 2019, 123, 323-328.	1.1	9
180	Sizeâ€Mediated Recurring Spinel Subâ€nanodomains in Li―and Mnâ€Rich Layered Cathode Materials. Angewandte Chemie, 2020, 132, 14419-14426.	1.6	9

#	Article	IF	CITATIONS
181	Stabilizing Oxygen Vacancies in ZrO ₂ by Ga ₂ O ₃ Boosts the Direct Dehydrogenation of Light Alkanes. ACS Catalysis, 2021, 11, 10159-10169.	5.5	9
182	Electronic and chemical properties of Li–Au and Cs–Au films on Ru(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 2029-2033.	0.9	8
183	Edge-jump inversion in the SiL3,2-edge optical XAFS of porous silicon. Journal of Synchrotron Radiation, 1999, 6, 215-216.	1.0	8
184	Atomic-scale distortion of optically activated Sm dopants identified with site-selective X-ray absorption spectroscopy. Journal of Applied Physics, 2013, 114, 133505.	1.1	8
185	Characterization of tribofilms derived from zinc dialkyl dithiophosphate and serpentine by X-ray absorption spectroscopy. Tribology International, 2014, 73, 167-176.	3.0	8
186	Tracking the transformations of mesoporous microspheres of calcium silicate hydrate at the nanoscale upon ibuprofen release: a XANES and STXM study. CrystEngComm, 2015, 17, 4117-4124.	1.3	8
187	Scanning transmission X-ray microscopy studies of chromium hydroxide hollow spheres and nanoparticles formed by gamma radiation. Canadian Journal of Chemistry, 2017, 95, 1146-1150.	0.6	8
188	Molecular-layer-deposited tincone: a new hybrid organic–inorganic anode material for three-dimensional microbatteries. Chemical Communications, 2020, 56, 13221-13224.	2.2	8
189	Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chemistry of Materials, 2021, 33, 2029-2036.	3.2	8
190	Favorable Bonding and Band Structures of Cu ₂ ZnSnS ₄ and CdS Films and Their Photovoltaic Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 32683-32695.	4.0	8
191	Photoemission studies of silicon on the Ru(001) surface. Applied Physics Letters, 1991, 58, 161-163.	1.5	7
192	RIXS, XEOL and XEOL Imaging of Rare-earth Phosphors at the L[sub 3,2]-edges. AIP Conference Proceedings, 2010, , .	0.3	7
193	Microstructure and electronic behavior of PtPd@Pt core-shell nanowires. Journal of Materials Research, 2010, 25, 711-717.	1.2	7
194	Mechanisms of Phase Transformations of TiO ₂ Nanotubes and Nanorods. Journal of Physical Chemistry C, 2011, 115, 22257-22264.	1.5	7
195	Probing the CZTS/CdS heterojunction utilizing photoelectrochemistry and x-ray absorption spectroscopy. Journal of Chemical Physics, 2018, 148, 134702.	1.2	7
196	Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emission. Scientific Reports, 2018, 8, 9565.	1.6	7
197	Imaging the Surface of a Hand-Colored 19th Century Daguerreotype. Applied Spectroscopy, 2018, 72, 1215-1224.	1.2	7
198	Correlative imaging of ionic transport and electronic structure in nano Li _{0.5} FePO ₄ electrodes. Chemical Communications, 2020, 56, 984-987.	2.2	7

#	Article	IF	CITATIONS
199	Strain and ligand effects in Pt-Ni alloys studied by valence-to-core X-ray emission spectroscopy. Scientific Reports, 2021, 11, 13698.	1.6	7
200	Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS ₂ Flakes Decorated with Gold Nanoparticles. Journal of Physical Chemistry C, 0, , .	1.5	7
201	Au-197 Mössbauer isomer shift in Au-Cu and Au-Ag alloys: The role of the Au 5d electrons. Hyperfine Interactions, 1994, 94, 2267-2272.	0.2	6
202	MULTICORE MULTICHANNEL-DETECTION (MCMD) X-RAY ABSORPTION FINE STRUCTURES (XAFS) STUDIES OF THIN FILMS. Advanced Series in Physical Chemistry, 2002, , 1154-1212.	1.5	6
203	Near-band-gap luminescence from TiO ₂ nanograss–nanotube hierarchical membranes. Canadian Journal of Chemistry, 2015, 93, 106-112.	0.6	6
204	Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4nanocrystal films by x-ray absorption fine structures (XAFSs). Journal of Chemical Physics, 2016, 145, 204702.	1.2	6
205	Antimonyâ€Functionalized Phosphineâ€Based Photopolymer Networks. Angewandte Chemie, 2018, 130, 13436-13440.	1.6	6
206	High Energy Resolution Fluorescence Detection of the Pt L _{3,2} -Edge Whitelines of Pt-Based Bimetallic Systems: Implications for the Pt 5d _{5/2,3/2} Density of States. Journal of Physical Chemistry C, 2021, 125, 2327-2333.	1.5	6
207	Surface second harmonic generation of Se–Te–Sb films. Journal of Materials Science: Materials in Electronics, 2009, 20, 164-169.	1.1	5
208	Lithium-Ion Batteries: Rational Design of Atomic-Layer-Deposited LiFePO4as a High-Performance Cathode for Lithium-Ion Batteries (Adv. Mater. 37/2014). Advanced Materials, 2014, 26, 6358-6358.	11.1	5
209	Cr doped ZnO nanostructures: synthesis, electronic structures, and magnetic properties. Canadian Journal of Chemistry, 2017, 95, 1225-1232.	0.6	5
210	Eyeing the past: synchrotron µ-XANES and XRF imaging of tarnish distribution on 19th century daguerreotypes. Journal of Synchrotron Radiation, 2019, 26, 1679-1686.	1.0	5
211	Electron and xâ€ray fluorescence yield measurements of the Cu L2,3â€edge xâ€ray absorption fine structures: A comparative study. Review of Scientific Instruments, 1995, 66, 1528-1530.	0.6	4
212	Advances in Time Resolved X-ray Excited Optical Luminescence Instrumentation at the Canadian Light Source. AIP Conference Proceedings, 2010, , .	0.3	4
213	Cathodoluminescence, X-ray excited optical luminescence, and X-ray absorption near-edge structure studies of ZnO nanostructures. Canadian Journal of Chemistry, 2012, 90, 298-305.	0.6	4
214	The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study. Physical Chemistry Chemical Physics, 2016, 18, 6406-6410.	1.3	4
215	A Comprehensive Investigation of a Zwitterionic Ge ^I Dimer with a 1,2â€Dicationic Core. Chemistry - A European Journal, 2019, 25, 14790-14800.	1.7	4
216	Retrieving Tarnished Daguerreotype Content Using X-ray Fluorescence Imaging—Recent Observations on the Effect of Chemical and Electrochemical Cleaning Methods. Heritage, 2021, 4, 1605-1615.	0.9	4

#	Article	IF	CITATIONS
217	Glovebox-integrated XES and XAS station for in situ studies in tender x-ray region. Electronic Structure, 2020, 2, 047001.	1.0	4
218	X-Ray Absorption Fine Structure (Xafs) Studies Of Cobalt Silicide Thin Films. Materials Research Society Symposia Proceedings, 1998, 524, 273.	0.1	3
219	An X-ray excited optical luminescence study of a zoned quartz crystal from an emerald-bearing quartz vein, Hiddenite, North Carolina, USA. Physics and Chemistry of Minerals, 2009, 36, 207-216.	0.3	3
220	Morphology and Electronic Structures of Calcium Phosphate Coated Titanium Dioxide Nanotubes. Materials Research Society Symposia Proceedings, 2011, 1352, 63.	0.1	3
221	Magnetic anisotropy induced in NiCo granular nanostructures by ZnO nanorods deposited on a polymer substrate. RSC Advances, 2014, 4, 47987-47991.	1.7	3
222	Recovering Past Reflections: X-Ray Fluorescence Imaging of Electrocleaned 19th Century Daguerreotypes. Heritage, 2019, 2, 568-586.	0.9	3
223	TiO ₂ Nanotubes: Morphology, Size, Crystallinity, and Phase-Dependent Properties from Synchrotron-Spectroscopy Studies. Journal of Physical Chemistry C, 2022, 126, 3265-3275.	1.5	3
224	VUV- and Soft X-Ray-Induced Optical Luminescence and X-Ray Absorption Fine Structures of Porous Silicon. Materials Research Society Symposia Proceedings, 1992, 281, 525.	0.1	2
225	Synchrotron Radiation Studies of Platinum Silicide Thin Films. Materials Research Society Symposia Proceedings, 1995, 402, 587.	0.1	2
226	Time Resolved Studies of ZnO (Eu) Nanostructure Luminescence Using Short Synchrotron Radiation Pulses. AIP Conference Proceedings, 2007, , .	0.3	2
227	XAFS and XEOL Studies of CdSe Nanostructures. AIP Conference Proceedings, 2007, , .	0.3	2
228	X-Ray Excited Optical Luminescence from Ru(bipy)[sub 3]2+] and Ru(phen)[sub 3]2+] in the Energy and Time Domains. AIP Conference Proceedings, 2007, , .	0.3	2
229	Morphology-dependent luminescence from ZnO nanostructures — An X-ray excited optical luminescence study at the Zn K-edge. Canadian Journal of Chemistry, 2009, 87, 1255-1260.	0.6	2
230	Electronic structure and optical properties of 2,5,8,11-tetra-tert-butylperylene polyhedral crystals from x-ray absorption near-edge structure and x-ray excited optical luminescence studies. Applied Physics Letters, 2011, 98, 243106.	1.5	2
231	Effects of polymer intercalation in calcium silicate hydrates on drug loading capacities and drug release kinetics: an X-ray absorption near edge structure study. Canadian Journal of Chemistry, 2017, 95, 1122-1129.	0.6	2
232	Investigation of amorphous to crystalline phase transition of sodium titanate by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. Canadian Journal of Chemistry, 2017, 95, 1163-1169.	0.6	2
233	Imaging of Individual Eu Doped Y2O3 Sub-microspheres Using Photoluminescence Yield: An Application of Scanning Transmission X-ray Microscopy in Luminescent Materials. Microscopy and Microanalysis, 2018, 24, 480-481.	0.2	2
234	Visualization of the secondary phase in LiFePO4 ingots with advanced mapping techniques. Canadian Journal of Chemical Engineering, 2019, 97, 2218-2223.	0.9	2

#	Article	IF	CITATIONS
235	Exploring the Dzi Bead with Synchrotron Light: XRD, XRF Imaging and μ-XANES Analysis. Heritage, 2020, 3, 1035-1045.	0.9	2
236	Structure and Electronic Properties of Molecularly-capped Metal Nanoparticles: The effect of Nano-size, Metal Core and Capping Molecule Probed by X-ray Absorption Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 738, 1341.	0.1	1
237	Influence of hydrogen passivation on the luminescence of Si quantum dots embedded in Si3Nx. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 061202.	0.6	1
238	Large-scale hollow nanoparticle identification by X-ray absorption spectroscopy. Canadian Journal of Chemistry, 2017, 95, 1151-1155.	0.6	1
239	Bromine, a possible marine diet indicator? A hypothesis revisited. Archaeometry, 2020, 62, 1267-1279.	0.6	1
240	Highly Textured Assembly of Engineered Si Nanowires for Artificial Synapses Model. ACS Applied Electronic Materials, 2021, 3, 1375-1383.	2.0	1
241	Electronic and relating behavior of Mn-doped ZnO nanostructures: An x-ray absorption spectroscopy study. AIP Advances, 2021, 11, 065027.	0.6	1
242	Direct Observation of Optical Band Gap Components in Ga1–xZnxN1–xOx Solid-Solution Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 19438-19444.	1.5	1
243	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. , 0, .		1
244	Ion Yields for Tetramethylgermane Exposed to X-Rays near the Ge K-Edge. Journal of Physical Chemistry A, 2000, 104, 2859-2864.	1.1	0
245	XANES study of Fe-implanted strontium titanate. , 2014, , .		0
246	Batteries: Atomic Layer Deposition of Hierarchical CNTs@FePO4 Architecture as a 3D Electrode for Lithium-Ion and Sodium-Ion Batteries (Adv. Mater. Interfaces 21/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
247	Rücktitelbild: Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte (Angew. Chem.) Tj ETQq1 1	0.784314	rgBT /Over
248	Frontispiece: A Comprehensive Investigation of a Zwitterionic Ge ^I Dimer with a 1,2â€Dicationic Core. Chemistry - A European Journal, 2019, 25, .	1.7	0