Vladimir N Sytnyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8103782/publications.pdf Version: 2024-02-01

VIADIMID N SVTNVK

#	Article	IF	CITATIONS
1	RNA polyadenylation patterns in the human transcriptome. Gene, 2022, 816, 146133.	2.2	4
2	Neural glycomics: the sweet side of nervous system functions. Cellular and Molecular Life Sciences, 2021, 78, 93-116.	5.4	25
3	Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 592126.	2.9	16
4	NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis. Journal of Cell Biology, 2020, 219, .	5.2	14
5	Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Neuroscientist, 2020, 26, 415-437.	3.5	10
6	Editorial: From Structure to Function - The Interplay Between Cell Adhesion Molecules and the Cytoskeleton. Frontiers in Cell and Developmental Biology, 2020, 8, 104.	3.7	0
7	Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. Genomics, 2019, 111, 1676-1686.	2.9	10
8	Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cerebral Cortex, 2019, 29, 1439-1459.	2.9	19
9	Cell Adhesion Molecule Close Homolog of L1 (CHL1) Guides the Regrowth of Regenerating Motor Axons and Regulates Synaptic Coverage of Motor Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 174.	2.9	15
10	Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends in Neurosciences, 2017, 40, 295-308.	8.6	180
11	Replicable Expansion and Differentiation of Neural Precursors from Adult Canine Skin. Stem Cell Reports, 2017, 9, 557-570.	4.8	6
12	Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Frontiers in Molecular Neuroscience, 2017, 10, 378.	2.9	28
13	Synaptic Cell Adhesion Molecules in Alzheimer's Disease. Neural Plasticity, 2016, 2016, 1-9.	2.2	56
14	Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons. Frontiers in Cell and Developmental Biology, 2016, 4, 9.	3.7	54
15	KCa1.1, a calcium-activated potassium channel subunit alpha 1, is targeted by miR-17-5p and modulates cell migration in malignant pleural mesothelioma. Molecular Cancer, 2016, 15, 44.	19.2	46
16	Transcriptional regulation of long-term potentiation. Neurogenetics, 2016, 17, 201-210.	1.4	13
17	Ageâ€dependent loss of parvalbuminâ€expressing hippocampal interneurons in mice deficient in <scp>CHL</scp> 1, a mental retardation and schizophrenia susceptibility gene. Journal of Neurochemistry, 2015, 135, 830-844.	3.9	48
18	Neural Cell Adhesion Molecule 2 Promotes the Formation of Filopodia and Neurite Branching by Inducing Submembrane Increases in Ca ²⁺ Levels. Journal of Neuroscience, 2015, 35, 1739-1752.	3.6	49

VLADIMIR N SYTNYK

#	Article	IF	CITATIONS
19	Kinesin-1 promotes post-Golgi trafficking of NCAM140 and NCAM180 to the cell surface. Journal of Cell Science, 2015, 128, 2816-29.	2.0	14
20	Intracellular transport and cell surface delivery of the neural cell adhesion molecule (NCAM). Bioarchitecture, 2015, 5, 54-60.	1.5	8
21	Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nature Communications, 2015, 6, 8836.	12.8	70
22	PI4KIIα phosphorylation by GSK3 directs vesicular trafficking to lysosomes. Biochemical Journal, 2014, 464, 145-156.	3.7	19
23	The Neural Cell Adhesion Molecule (NCAM) Associates with and Signals through p21-Activated Kinase 1 (Pak1). Journal of Neuroscience, 2013, 33, 790-803.	3.6	37
24	Cell adhesion and intracellular calcium signaling in neurons. Cell Communication and Signaling, 2013, 11, 94.	6.5	56
25	The Neural Cell Adhesion Molecule Promotes Maturation of the Presynaptic Endocytotic Machinery by Switching Synaptic Vesicle Recycling from Adaptor Protein 3 (AP-3)- to AP-2-Dependent Mechanisms. Journal of Neuroscience, 2013, 33, 16828-16845.	3.6	43
26	Lipid Raft-dependent Endocytosis of Close Homolog of Adhesion Molecule L1 (CHL1) Promotes Neuritogenesis. Journal of Biological Chemistry, 2012, 287, 44447-44463.	3.4	28
27	Controlling the size of lipid droplets: lipid and protein factors. Current Opinion in Cell Biology, 2012, 24, 509-516.	5.4	161
28	L1CAM increases MAP2 expression via the MAPK pathway to promote neurite outgrowth. Molecular and Cellular Neurosciences, 2012, 50, 169-178.	2.2	35
29	The Neural Cell Adhesion Molecule Promotes FGFR-Dependent Phosphorylation and Membrane Targeting of the Exocyst Complex to Induce Exocytosis in Growth Cones. Journal of Neuroscience, 2011, 31, 3522-3535.	3.6	40
30	Immobilized Pool of NCAM180 in the Postsynaptic Membrane Is Homeostatically Replenished by the Flux of NCAM180 from Extrasynaptic Regions. Journal of Biological Chemistry, 2011, 286, 23397-23406.	3.4	11
31	NCAM/Spectrin Complex Disassembly Results in PSD Perforation and Postsynaptic Endocytic Zone Formation. Cerebral Cortex, 2011, 21, 2217-2232.	2.9	31
32	CHL1 Is a Selective Organizer of the Presynaptic Machinery Chaperoning the SNARE Complex. PLoS ONE, 2010, 5, e12018.	2.5	51
33	Cellular Form of Prion Protein Inhibits Reelin-Mediated Shedding of Caspr from the Neuronal Cell Surface to Potentiate Caspr-Mediated Inhibition of Neurite Outgrowth. Journal of Neuroscience, 2010, 30, 9292-9305.	3.6	51
34	Clustering of the Neural Cell Adhesion Molecule (NCAM) at the Neuronal Cell Surface Induces Caspase-8- and -3-dependent Changes of the Spectrin Meshwork Required for NCAM-mediated Neurite Outgrowth. Journal of Biological Chemistry, 2010, 285, 42046-42057.	3.4	51
35	NCAM induces CaMKIIα-mediated RPTPα phosphorylation to enhance its catalytic activity and neurite outgrowth. Journal of Cell Biology, 2008, 182, 1185-1200.	5.2	42
36	Glial Scar Expression of CHL1, the Close Homolog of the Adhesion Molecule L1, Limits Recovery after Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 7222-7233.	3.6	95

VLADIMIR N SYTNYK

#	Article	IF	CITATIONS
37	The Adhesion Molecule CHL1 Regulates Uncoating of Clathrin-Coated Synaptic Vesicles. Neuron, 2006, 52, 1011-1025.	8.1	86
38	NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. Journal of Cell Biology, 2006, 174, 1071-1085.	5.2	109
39	RPTPα is essential for NCAM-mediated p59fyn activation and neurite elongation. Journal of Cell Biology, 2005, 168, 127-139.	5.2	121
40	Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. Journal of Cell Biology, 2005, 169, 341-354.	5.2	361
41	Electroporation-based gene transfer for efficient transfection of neural precursor cells. Molecular Brain Research, 2005, 138, 182-190.	2.3	20
42	Trans-Golgi network delivery of synaptic proteins in synaptogenesis. Journal of Cell Science, 2004, 117, 381-388.	2.0	72
43	Polysialylated Neural Cell Adhesion Molecule Promotes Remodeling and Formation of Hippocampal Synapses. Journal of Neuroscience, 2004, 24, 9372-9382.	3.6	244
44	Neural cell adhesion molecule (NCAM) association with PKCβ2 via βI spectrin is implicated in NCAM-mediated neurite outgrowth. Journal of Cell Biology, 2003, 161, 625-639.	5.2	138
45	Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. Journal of Cell Biology, 2002, 157, 521-532.	5.2	259
46	Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. Journal of Cell Biology, 2002, 159, 649-661.	5.2	151
47	The Neural Cell Adhesion Molecule Regulates Cell-Surface Delivery of G-Protein-Activated Inwardly Rectifying Potassium Channels Via Lipid Rafts. Journal of Neuroscience, 2002, 22, 7154-7164.	3.6	84
48	Title is missing!. Neurophysiology, 2001, 33, 11-14.	0.3	0
49	Diffusion and Active Transport of NCAM within the Neuronal Plasma Membrane. Neurophysiology, 2001, 33, 140-147.	0.3	0