Andrew C Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8103719/publications.pdf

Version: 2024-02-01

48 papers

7,084 citations

33 h-index 206112 48 g-index

55 all docs

55 docs citations

55 times ranked 7296 citing authors

#	Article	IF	CITATIONS
1	Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell, 2007, 129, 605-616.	28.9	676
2	Bioluminescence Imaging of Individual Fibroblasts Reveals Persistent, Independently Phased Circadian Rhythms of Clock Gene Expression. Current Biology, 2004, 14, 2289-2295.	3.9	614
3	The unfolded protein response in nutrient sensing and differentiation. Nature Reviews Molecular Cell Biology, 2002, 3, 411-421.	37.0	540
4	Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Medicine, 2010, 16, 1152-1156.	30.7	465
5	A Genome-wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells. Cell, 2009, 139, 199-210.	28.9	437
6	Redundant Function of REV-ERBÎ \pm and Î 2 and Non-Essential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms. PLoS Genetics, 2008, 4, e1000023.	3.5	347
7	Ligand-independent Dimerization Activates the Stress Response Kinases IRE1 and PERK in the Lumen of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 24881-24885.	3.4	341
8	The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14343-14348.	7.1	293
9	Delay in Feedback Repression by Cryptochrome 1 Is Required for Circadian Clock Function. Cell, 2011, 144, 268-281.	28.9	288
10	A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3Î ² . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20746-20751.	7.1	273
11	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
12	A model of the cell-autonomous mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11107-11112.	7.1	183
13	The unfolded protein response. Journal of Cell Science, 2003, 116, 1861-1862.	2.0	179
14	Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker. PLoS Biology, 2010, 8, e1000513.	5.6	172
15	Mammalian circadian signaling networks and therapeutic targets. Nature Chemical Biology, 2007, 3, 630-639.	8.0	162
16	Circadian Regulation of ATP Release in Astrocytes. Journal of Neuroscience, 2011, 31, 8342-8350.	3.6	155
17	mTOR signaling regulates central and peripheral circadian clock function. PLoS Genetics, 2018, 14, e1007369.	3.5	154
18	Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nature Structural and Molecular Biology, 2015, 22, 476-484.	8.2	137

#	Article	IF	CITATIONS
19	Translational Control of Entrainment and Synchrony of the Suprachiasmatic Circadian Clock by mTOR/4E-BP1 Signaling. Neuron, 2013, 79, 712-724.	8.1	128
20	Cell Type-Specific Functions of Period Genes Revealed by Novel Adipocyte and Hepatocyte Circadian Clock Models. PLoS Genetics, 2014, 10, e1004244.	3.5	119
21	Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biology, 2014, 12, e1001840.	5.6	109
22	The Protein Kinase/Endoribonuclease IRE1α That Signals the Unfolded Protein Response Has a Luminal N-terminal Ligand-independent Dimerization Domain. Journal of Biological Chemistry, 2002, 277, 18346-18356.	3.4	103
23	Structure and Intermolecular Interactions of the Luminal Dimerization Domain of Human IRE1α. Journal of Biological Chemistry, 2003, 278, 17680-17687.	3.4	93
24	NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. ELife, $2018, 7, \ldots$	6.0	84
25	Cry1â^'/â^' Circadian Rhythmicity Depends on SCN Intercellular Coupling. Journal of Biological Rhythms, 2012, 27, 443-452.	2.6	78
26	Light-regulated translational control of circadian behavior by eIF4E phosphorylation. Nature Neuroscience, 2015, 18, 855-862.	14.8	71
27	Identification of a Novel Cryptochrome Differentiating Domain Required for Feedback Repression in Circadian Clock Function. Journal of Biological Chemistry, 2012, 287, 25917-25926.	3.4	67
28	A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms. Molecular Cell, 2017, 66, 447-457.e7.	9.7	66
29	CREBH Couples Circadian Clock With Hepatic Lipid Metabolism. Diabetes, 2016, 65, 3369-3383.	0.6	59
30	Construction and characterization of the soybean leaf metalloproteinase cDNA 1. FEBS Letters, 1997, 404, 283-288.	2.8	53
31	Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters. Journal of Visualized Experiments, 2012, , .	0.3	48
32	The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron, 2019, 104, 724-735.e6.	8.1	43
33	The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO Journal, 2004, 23, 2281-2292.	7.8	42
34	NF- \hat{l}° B modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genetics, 2021, 17, e1009933.	3.5	39
35	Time-restricted feeding of a high-fat diet in male C57BL/6 mice reduces adiposity but does not protect against increased systemic inflammation. Applied Physiology, Nutrition and Metabolism, 2018, 43, 1033-1042.	1.9	33
36	Kava as a Clinical Nutrient: Promises and Challenges. Nutrients, 2020, 12, 3044.	4.1	32

#	Article	IF	CITATIONS
37	Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12313-E12322.	7.1	26
38	Systems Level Understanding of Circadian Integration with Cell Physiology. Journal of Molecular Biology, 2020, 432, 3547-3564.	4.2	24
39	The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Scientific Reports, 2019, 9, 11883.	3.3	23
40	Innovations in Geroscience to enhance mobility in older adults. Experimental Gerontology, 2020, 142, 111123.	2.8	17
41	Mammalian retinal Müller cells have circadian clock function. Molecular Vision, 2016, 22, 275-83.	1.1	15
42	Likelihood-based tests for detecting circadian rhythmicity and differential circadian patterns in transcriptomic applications. Briefings in Bioinformatics, 2021, 22, .	6.5	11
43	Prevalence of cycling genes and drug targets calls for prospective chronotherapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15869-15870.	7.1	9
44	Reuniting the Body "Neck Up and Neck Down―to Understand Cognitive Aging: The Nexus of Geroscience and Neuroscience. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, , .	3.6	5
45	Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. , 2021, 12, 2769-2798.		5
46	A wrinkle in time: circadian biology in pulmonary vascular health and disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L84-L101.	2.9	3
47	Developing Mammalian Cellular Clock Models Using Firefly Luciferase Reporter. Methods in Molecular Biology, 2018, 1755, 49-64.	0.9	2
48	Circadian Synchrony: Sleep, Nutrition, and Physical Activity Frontiers in Network Physiology, 2021, 1, .	1.8	1