Pawel Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8103663/publications.pdf

Version: 2024-02-01

3 dex
125 authors

#	Article	IF	CITATIONS
1	s-Tetrazine donor-acceptor electrodeposited layer with properties controlled by doping anions generally considered as interchangeable. Electrochimica Acta, 2022, 405, 139788.	5.2	3
2	Reactive Extrusion Printing for Simultaneous Crystallizationâ€Deposition of Metalâ€Organic Frameworks Films. Angewandte Chemie - International Edition, 2022, , .	13.8	4
3	A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices. Chemistry of Materials, 2022, 34, 140-151.	6.7	7
4	Enhanced Interfacial Electron Transfer Kinetics Between Co ^{2+/3} + Complexes and Organic Dyes with Free Space Near Their Backbone. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
5	Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting. Inorganics, 2022, 10, 53.	2.7	8
6	Electrochemical CO ₂ Reduction Catalyzed by Copper Molecular Complexes: The Influence of Ligand Structure. Energy & Ene	5.1	19
7	Carbazole-substituted dialkoxybenzodithiophene dyes for efficient light harvesting and the effect of alkoxy tail length. Dyes and Pigments, 2021, 186, 109002.	3.7	9
8	Photocontrolled directional transport using water-in-oil droplets. New Journal of Chemistry, 2021, 45, 1172-1175.	2.8	5
9	Substrate-Dependent Electron-Transfer Rate of Mixed-Ligand Electrolytes: Tuning Electron-Transfer Rate without Changing Driving Force. Journal of the American Chemical Society, 2021, 143, 488-495.	13.7	9
10	Amphiphilic Zinc Porphyrin Singleâ€Walled Carbon Nanotube Hybrids: Efficient Formation and Excited State Charge Transfer Studies. Small, 2021, 17, 2005648.	10.0	10
11	Rapid spatially-resolved post-synthetic patterning of metal–organic framework films. Chemical Communications, 2021, 57, 4706-4709.	4.1	7
12	The impact of insufficient time resolution on dye regeneration lifetime determined using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13001-13010.	2.8	3
13	Electrochemical studies of novel thiophene-tetrazine donor-acceptor hybrids. Tetrahedron Letters, 2021, 68, 152905.	1.4	3
14	Air-to-air enthalpy exchangers: Membrane modification using metal-organic frameworks, characterisation and performance assessment. Journal of Cleaner Production, 2021, 293, 126157.	9.3	9
15	Electrochemical and Spectroelectrochemical Studies on the Reactivity of Perimidine–Carbazole–Thiophene Monomers towards the Formation of Multidimensional Macromolecules versus Stable π-Dimeric States. Materials, 2021, 14, 2167.	2.9	6
16	Terthiophene Derivative-Based Photoinitiating Systems for Free Radical and Cationic Polymerization under Blue LEDs. Industrial & Engineering Chemistry Research, 2021, 60, 8733-8742.	3.7	3
17	Solid State Photon Up-Conversion Emission from Chromophore-Tethered PPV Films. Journal of Physical Chemistry C, 2021, 125, 14538-14548.	3.1	6
18	Exohedral Functionalization of Fullerene by Substituents Controlling of Molecular Organization for Spontaneous C60 Dimerization in Liquid Crystal Solutions and in a Bulk Controlled by a Potential. Polymers, 2021, 13, 2816.	4.5	3

#	Article	IF	CITATIONS
19	Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. Advances in Physics: X, 2021, 6, .	4.1	3
20	Optical analysis of an integrated solar cell and a photon up converter, providing guidance for future device engineering efforts. Journal of Applied Physics, 2021, 130, 194501.	2.5	2
21	Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes. Electrochimica Acta, 2020, 330, 135140.	5. 2	16
22	Synergistic Amplification of Oxygen Generation in (Photo)Catalytic Water Splitting by a PEDOT/Nano o 3 O 4 /MWCNT Thin Film Composite. ChemCatChem, 2020, 12, 1580-1584.	3.7	6
23	Polyterthiophenes Crossâ€Linked with Terpyridyl Metal Complexes for Molecular Architecture of Optically and Electrochemically Tunable Materials. ChemElectroChem, 2020, 7, 4453-4459.	3.4	4
24	Synergistic Effect of Alkyl Chain Barriers on Heteroleptic Ruthenium Dyes and Co ^{3+/2+} Complex Mediators for Reduced Charge Recombination in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 23013-23026.	3.1	11
25	Emulating photosynthetic processes with light harvesting synthetic protein (maquette) assemblies on titanium dioxide. Materials Advances, 2020, 1, 1877-1885.	5.4	2
26	Second-order programming the synthesis of metal–organic frameworks. Chemical Communications, 2020, 56, 12355-12358.	4.1	2
27	Investigation of Ferrocene Linkers in \hat{I}^2 -Substituted Porphyrins. Journal of Physical Chemistry A, 2020, 124, 5513-5522.	2.5	6
28	The Effect of the Dielectric Environment on Electron Transfer Reactions at the Interfaces of Molecular Sensitized Semiconductors in Electrolytes. Journal of Physical Chemistry C, 2020, 124, 6979-6992.	3.1	8
29	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2020, 8, 14966-14974.	10.3	19
30	Carboxybetaine functionalized nanosilicas as protein resistant surface coatings. Biointerphases, 2020, 15, 011001.	1.6	5
31	Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins and Co ^{2+/3+} Complex Electrolytes. Journal of Physical Chemistry C, 2020, 124, 9178-9190.	3.1	10
32	Excited-State Switching Frustrates the Tuning of Properties in Triphenylamine-Donor-Ligand Rhenium(I) and Platinum(II) Complexes. Inorganic Chemistry, 2020, 59, 6736-6746.	4.0	16
33	Synergistic amplification of (photo)catalytic oxygen and hydrogen generation from water by thin-film polypyrrole composites. Molecular Catalysis, 2020, 490, 110955.	2.0	6
34	Light soaking effect driven in porphyrin dye-sensitized solar cells using 1D TiO2 nanotube photoanodes. Sustainable Materials and Technologies, 2020, 24, e00165.	3.3	9
35	Modified silica nanoparticle coatings: Dual antifouling effects of self-assembled quaternary ammonium and zwitterionic silanes. Biointerphases, 2020, 15, 021009.	1.6	6
36	Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. Langmuir, 2019, 35, 1335-1345.	3.5	35

#	Article	IF	CITATIONS
37	Dual Droplet Functionality: Phototaxis and Photopolymerization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31484-31489.	8.0	6
38	When "Donor–Acceptor―Dyes Delocalize: A Spectroscopic and Computational Study of D–A Dyes Using "Michler's Base― Journal of Physical Chemistry A, 2019, 123, 5957-5968.	2.5	7
39	Energy efficient electrochemical reduction of CO ₂ to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.	30.8	125
40	Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO ₂ Reduction to CO. ACS Energy Letters, 2019, 4, 666-672.	17.4	183
41	Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC). Journal of Composites Science, 2019, 3, 108.	3.0	2
42	Computational and Spectroscopic Analysis of \hat{l}^2 -Indandione Modified Zinc Porphyrins. Journal of Physical Chemistry A, 2018, 122, 4448-4456.	2.5	6
43	Mono and di-substituted BODIPY with electron donating carbazole, thiophene, and 3,4-ethylenedioxythiophene units. Electrochimica Acta, 2018, 271, 685-698.	5.2	9
44	Exploiting Intermolecular Interactions between Alkyl-Functionalized Redox-Active Molecule Pairs to Enhance Interfacial Electron Transfer. Journal of the American Chemical Society, 2018, 140, 13935-13944.	13.7	18
45	Use of alkylated, amphiphilic zinc porphyrins to disperse individualized SWCNTs. Journal of Porphyrins and Phthalocyanines, 2018, 22, 573-580.	0.8	1
46	Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite. Catalysis Science and Technology, 2018, 8, 4169-4179.	4.1	7
47	Moving Droplets in 3D Using Light. Advanced Materials, 2018, 30, e1801821.	21.0	49
48	Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study. Molecules, 2018, 23, 421.	3.8	10
49	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	19.5	88
50	Aldehyde isomers of porphyrin: A spectroscopic and computational study. Journal of Molecular Structure, 2018, 1173, 665-670.	3.6	7
51	Synergistic Amplification of Water Oxidation Catalysis on Pt by a Thin-Film Conducting Polymer Composite. ACS Applied Energy Materials, 2018, 1, 4235-4246.	5.1	8
52	Aesthetically Pleasing, Visible Light Transmissive, Luminescent Solar Concentrators Using a BODIPY Derivative. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800551.	1.8	3
53	Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer. RSC Advances, 2018, 8, 29505-29512.	3.6	4
54	Properties and characterization of conductive polymers. , 2018, , 41-76.		0

#	Article	IF	CITATIONS
55	Demetallatation of electrochemically polymerised Mn porphyrin anion / PEDOT composites under light-illumination. Synthetic Metals, 2017, 228, 58-63.	3.9	1
56	Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18584-18594.	8.0	87
57	Synthesis and Lightâ€Harvesting Potential of Cyanovinyl βâ€Substituted Porphyrins and Dyads. European Journal of Organic Chemistry, 2017, 2017, 5750-5762.	2.4	3
58	Design and engineering of water-soluble light-harvesting protein maquettes. Chemical Science, 2017, 8, 316-324.	7.4	38
59	Studies of poly(3,4-ethylenedioxythiophene) (PEDOT) films containing cationic Mn porphyrins. A loading-dependent demetalation of Mn(III)TPP in PEDOT (Mn(III)TPP=5,10,15,20-tetraphenylporphyrinato) Tj ET	Qqb. b 0.7	843:14 rgBT /(
60	Systematic elongation of thienyl linkers and their effect on optical and electrochemical properties in carbazole–BODIPY donor–acceptor systems. RSC Advances, 2016, 6, 36500-36509.	3.6	18
61	Enhancement of dye regeneration kinetics in dichromophoric porphyrin–carbazole triphenylamine dyes influenced by more exposed radical cation orbitals. Chemical Science, 2016, 7, 3506-3516.	7.4	29
62	A Novel Covalently Linked Zn Phthalocyanineâ€Zn Porphyrin Dyad for Dyeâ€sensitized Solar Cells. Israel Journal of Chemistry, 2016, 56, 175-180.	2.3	6
63	A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synthetic Metals, 2016, 219, 101-108.	3.9	7
64	Effect of Ï∈-conjugation on electrochemical properties of poly(terthiophene)s 3′-substituted with fullerene C 60. Journal of Electroanalytical Chemistry, 2016, 772, 103-109.	3.8	10
65	A novel donor–acceptor carbazole and benzothiadiazole material for deep red and infrared emitting applications. Journal of Materials Chemistry C, 2016, 4, 2219-2227.	5.5	40
66	Controlled delivery of drugs adsorbed onto porous Fe 3 O 4 structures by application of AC/DC magnetic fields. Microporous and Mesoporous Materials, 2016, 226, 243-250.	4.4	27
67	Flexible Tuning of Unsaturated β‧ubstituents on Zn Porphyrins: A Synthetic, Spectroscopic and Computational Study. Chemistry - A European Journal, 2015, 21, 15622-15632.	3.3	9
68	Electrochemically Induced Synthesis of Poly(2,6-carbazole). Macromolecular Rapid Communications, 2015, 36, 1749-1755.	3.9	17
69	Decoloration rates of a photomerocyanine dye as a visual probe into hydrogen bonding interactions. Chemical Communications, 2015, 51, 4815-4818.	4.1	5
70	Disorder engineering of undoped TiO ₂ nanotube arrays for highly efficient solar-driven oxygen evolution. Physical Chemistry Chemical Physics, 2015, 17, 5642-5649.	2.8	24
71	Dichromophoric Zinc Porphyrins: Filling the Absorption Gap between the Soret and Q Bands. Journal of Physical Chemistry C, 2015, 119, 5350-5363.	3.1	19
72	Magnetic nanoparticles for "smart liposomes― European Biophysics Journal, 2015, 44, 647-654.	2.2	23

#	Article	IF	Citations
73	An intermediate band dye-sensitised solar cell using triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2015, 17, 24826-24830.	2.8	77
74	Probing Donor–Acceptor Interactions in <i>meso</i> Substituted Zn(II) Porphyrins Using Resonance Raman Spectroscopy and Computational Chemistry. Journal of Physical Chemistry C, 2015, 119, 22379-22391.	3.1	16
75	Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The Utility of Intermolecular Forces. ACS Applied Materials & Interfaces, 2015, 7, 22078-22083.	8.0	14
76	Photoâ€Chemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26, 7339-7345.	21.0	64
77	Enhanced performance of dye-sensitized solar cells using carbazole-substituted di-chromophoric porphyrin dyes. Journal of Materials Chemistry A, 2014, 2, 16963-16977.	10.3	30
78	Electrochemical and photoelectronic studies on C60-pyrrolidine-functionalised poly(terthiophene). Electrochimica Acta, 2014, 141, 51-60.	5.2	13
79	A Nonconjugated Bridge in Dimer-Sensitized Solar Cells Retards Charge Recombination without Decreasing Charge Injection Efficiency. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10824-10829.	8.0	17
80	Synthesis, Characterization, and Photophysics of Oxadiazole- and Diphenylaniline-Substituted Re(I) and Cu(I) Complexes. Inorganic Chemistry, 2013, 52, 1304-1317.	4.0	34
81	Light Harvesting and Light Activatable Protein Maquettes Designed fromÂScratch. Biophysical Journal, 2013, 104, 531a.	0.5	1
82	The electronic characterization of conjugated aryl-substituted 2,5-bis(2-thien-2-ylethenyl) thiophene-based oligomers. Journal of Molecular Structure, 2013, 1047, 80-86.	3.6	3
83	Novel nanographene/porphyrin hybrids – preparation, characterization, and application in solar energy conversion schemes. Chemical Science, 2013, 4, 3085.	7.4	57
84	Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11885-11898.	3.1	20
85	A light-assisted, polymeric water oxidation catalyst that selectively oxidizes seawater with a low onset potential. Chemical Science, 2013, 4, 2797.	7.4	22
86	A merocyanine-based conductive polymer. Journal of Materials Chemistry C, 2013, 1, 3913.	5.5	15
87	Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications, 2012, 48, 4145.	4.1	215
88	lsomorphism in Two (E)-1-(4-Halophenyl)-N-[1-(4-Methylphenyl)-1H-Imidazol-4-yl]Methanimines (HalideÂ=ÂCl, Br). Journal of Chemical Crystallography, 2012, 42, 1036-1041.	1.1	0
89	Direct exfoliation of graphite with a porphyrin – creating functionalizable nanographene hybrids. Chemical Communications, 2012, 48, 8745.	4.1	56
90	Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synthetic Metals, 2012, 162, 2216-2221.	3.9	36

#	Article	IF	Citations
91	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.9	22
92	A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced Functional Materials, 2012, 22, 2692-2699.	14.9	254
93	A Porphyrinâ€Doped Polymer Catalyzes Selective, Lightâ€Assisted Water Oxidation in Seawater. Angewandte Chemie - International Edition, 2012, 51, 1907-1910.	13.8	39
94	Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte. Chemical Communications, 2011, 47, 9327.	4.1	20
95	Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. Journal of Physical Chemistry C, 2011, 115, 22084-22088.	3.1	53
96	Significant Performance Improvement of Porphyrin-Sensitized TiO ₂ Solar Cells under White Light Illumination. Journal of Physical Chemistry C, 2011, 115, 317-326.	3.1	42
97	Why Do Some Alkoxybromothiophenes Spontaneously Polymerize?. Australian Journal of Chemistry, 2011, 64, 335.	0.9	18
98	A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo- and Electrochemical Control. Journal of the American Chemical Society, 2011, 133, 5453-5462.	13.7	96
99	Determining the Orientation and Molecular Packing of Organic Dyes on a TiO ₂ Surface Using X-ray Reflectometry. Langmuir, 2011, 27, 12944-12950.	3 . 5	57
100	An erodible polythiophene-based composite for biomedical applications. Journal of Materials Chemistry, 2011, 21, 5555.	6.7	83
101	Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Applied Physics Letters, 2011, 98, .	3.3	33
102	Highly Stretchable Conducting SIBSâ€P3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962.	14.9	76
103	Electrochemical and UV–Vis/ESR spectroelectrochemical properties of thienylenevinylenes substituted by a 4-cyanostyryl group. Electrochimica Acta, 2011, 56, 4445-4450.	5. 2	1
104	Photocatalytic oxygen evolution from non-potable water by a bioinspired molecular water oxidation catalyst. Journal of Molecular Catalysis A, 2011, , .	4.8	2
105	5-Chloro-1-phenyl-1H-pyrazol-4-amine. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2320-o2320.	0.2	0
106	1-(3-Chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carboxamide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2626-o2626.	0.2	1
107	Understanding the Ground- and Excited-State Photophysics of Oxadiazole and Triarylamine Substituents in Copper and Rhenium Metal Complexes. , 2010, , .		0
108	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3276-3279.	3.1	94

#	Article	IF	Citations
109	Ionic liquid electrolyte porphyrin dye sensitised solar cells. Chemical Communications, 2010, 46, 3146.	4.1	92
110	Indanedione-Substituted Poly(terthiophene)s: Processable Conducting Polymers with Intramolecular Charge Transfer Interactions. Macromolecules, 2010, 43, 3817-3827.	4.8	30
111	Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synthetic Metals, 2010, 160, 76-82.	3.9	51
112	Linker Conjugation Effects in Rhenium(I) Bifunctional Hole‶ransport/Emitter Molecules. Chemistry - A European Journal, 2009, 15, 3682-3690.	3.3	39
113	Electronic Studies on Oligothienylenevinylenes: Understanding the Nature of Their Ground and Excited Electronic States. ChemPhysChem, 2009, 10, 1901-1910.	2.1	6
114	Tuning the optical properties of ZnTPP using carbonyl ring fusion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 931-935.	3.9	23
115	Znâ^'Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting. Journal of the American Chemical Society, 2009, 131, 15621-15623.	13.7	177
116	Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment. Energy and Environmental Science, 2009, 2, 1069.	30.8	49
117	High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1998-2003.	3.1	61
118	Raman frequency dispersion studies of substituted polythiophene films. International Journal of Nanotechnology, 2009, 6, 344.	0.2	4
119	Investigations of electrochemical and spectroelectrochemical properties (UV-Vis, EPR) of thiophene trimer derivatives substituted with phenylvinyl groups. Polimery, 2009, 54, 209-215.	0.7	1
120	An alternative synthesis of \hat{l}^2 -pyrrolic acetylene-substituted porphyrins. Tetrahedron Letters, 2008, 49, 5632-5635.	1.4	15
121	Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 2008, 10, 519-522.	4.7	23
122	1 -(2 â \in ² -Aminophenyl)- and 1 -(2 â \in ² -hydroxyphenyl)-2-methyl-4-nitroimidazole: Crystallizing with two molecules in the asymmetric unit. Journal of Molecular Structure, 2008, 876, 134-139.	3.6	6
123	The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications, 2008, , 4741.	4.1	97
124	A Spectroscopic and Computational Study of the Neutral and Radical Cation Species of Conjugated Aryl-Substituted 2,5-Bis(2-thien-2-ylethenyl)thiophene-Based Oligomers. Journal of Physical Chemistry A, 2007, 111, 7171-7180.	2.5	31
125	Modulation of Electronic Properties in Neutral and Oxidized Oligothiophenes Substituted with Conjugated Polyaromatic Hydrocarbons. Journal of Physical Chemistry A, 2007, 111, 2385-2397.	2.5	7
126	Facile synthesis of acetylene-substituted terthiophenes. Tetrahedron Letters, 2007, 48, 6245-6248.	1.4	3

#	Article	IF	CITATIONS
127	Electrochemical actuation properties of a novel solution-processable polythiophene. Electrochimica Acta, 2007, 53, 1830-1836.	5.2	4
128	Flip-type disorder in 3-substituted 2,2′:5′,2′′-terthiophenes. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o400-o404.	0.4	3
129	Crystal packing of two 5-substituted 2-methyl-4-nitro-1 <i>H</i> i>imidazoles. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o445-o447.	0.4	5
130	Two different modes of halogen bonding in two 4-nitroimidazole derivatives. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o454-o457.	0.4	14
131	2-Methyl-4-nitro-1-(3-pyridyl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3454-o3454.	0.2	0
132	(Z)-2-Phenyl-3-(2,2′:5′,2′′-terthiophen-3′-yl)acrylonitrile. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3054-o3055.	0.2	0
133	2-Methyl-4-nitro-1-(4-nitrophenyl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3083-o3083.	0.2	2
134	2-Methoxy-1-methyl-4-nitro-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3120-o3120.	0.2	0
135	5-Methoxy-2-methyl-4-nitro-1-phenyl-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3587-o3587.	0.2	0
136	Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 11760-11762.	3.1	691
137	Novel fullerene-functionalised poly(terthiophenes). Journal of Electroanalytical Chemistry, 2007, 599, 79-84.	3.8	16
138	1,8,14,20-Tetraoxa-11,23-dithiatricyclo[21.3.0.09,13]hexacosa-9,12,21,24-tetraene. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o155-o156.	0.4	0
139	3-Methyl-5-nitrouracil. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o1257-o1259.	0.2	1
140	A flip-disorder in the structure of 3-[2-(anthracen-9-yl)ethenyl]thiophene. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, 05745-05747.	0.2	7
141	2,5-Bis(2-cyano-2-thienylvinyl)thiophene. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, 05931-05932.	0.2	6
142	Synthesis and characterization of novel styryl-substituted oligothienylenevinylenes. Tetrahedron, 2006, 62, 2190-2199.	1.9	17
143	Raman Spectroscopy of Short-Lived Terthiophene Radical Cations Generated by Photochemical and Chemical Oxidation. ChemPhysChem, 2006, 7, 1276-1285.	2.1	8
144	Resonance Raman Studies of \hat{I}^2 -Substituted Porphyrin Systems with Unusual Electronic Absorption Properties. ChemPhysChem, 2006, 7, 2358-2365.	2.1	19

#	Article	IF	Citations
145	Spectroscopic and density functional theory study of functionalized thiophene-benzene derivatives. Journal of Raman Spectroscopy, 2005, 36, 445-452.	2.5	6
146	1-(4-Chlorophenyl)-2-methyl-4-nitro-5-(1-piperidyl)-1H-imidazole. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o509-o511.	0.4	0
147	Structural and electronic properties of substituted terthiophenes. Synthetic Metals, 2005, 154, 325-328.	3.9	10
148	Novel Regiospecific MDMO-PPV Polymers with Improved Charge Transport Properties for Bulk Heterojunction Solar Cells. Synthetic Metals, 2005, 153, 81-84.	3.9	16
149	Experimental and Computational Studies of Substituted Terthiophene Oligomers as Electroluminescent Materials. Synthetic Metals, 2005, 153, 225-228.	3.9	6
150	Novel Regiospecific MDMOâ^'PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry B, 2004, 108, 5235-5242.	2.6	86
151	Oximes as intermediates or final products in reactions of nitroheteroarenes with nucleophiles in the presence of sodium methoxideâ€methanol system. Journal of Heterocyclic Chemistry, 2003, 40, 523-528.	2.6	12
152	Transformation of 5,5-Diaryl-4,5-dihydro-1,2,4-oxadiazoles to 4-Arylquinazolines ChemInform, 2003, 34, no.	0.0	0
153	Transformation of 5,5-diaryl-4,5-dihydro-1,2,4-oxadiazoles to 4-arylquinazolines. Tetrahedron Letters, 2003, 44, 2015-2017.	1.4	19
154	2,5-Di-2-thienylthiazolo[4,5-d]thiazole. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o91-o92.	0.4	6
155	N-Benzoylthiourea. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o83-o84.	0.4	3
156	Conjugated polymers based on new thienylene – PPV derivatives for solar cell applications. Electrochemistry Communications, 2002, 4, 912-916.	4.7	49
157	1,4-Bis[(1-methyl-1-phenylethyl)peroxymethyl]benzene. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o549-o550.	0.4	0
158	Two 1-substituted 4-nitroimidazoles. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 106-108.	0.4	3
159	Reduction of aromatic nitrocompounds by sodium borohydride in methanol in the presence of sodium methoxide. Tetrahedron, 1996, 52, 9541-9552.	1.9	18
160	1-Phenyl-4-imidazolidinone (Z)-Oxime. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 1462-1464.	0.4	1
161	Molecular Geometry Dependent Electronic Coupling and Reorganization Energy for Electron Transfer between Dye Molecule Adsorbed on TiO2 Electrode and Co Complex in Electrolyte Solutions. Journal of Physical Chemistry C, 0, , .	3.1	2
162	Reactive Extrusion Printing for Simultaneous Crystallizationâ€Deposition of Metalâ€Organic Frameworks Films. Angewandte Chemie, 0, , .	2.0	0