
## Pawel Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8103663/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 11760-11762.                                                                     | 3.1  | 691       |
| 2  | A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced<br>Functional Materials, 2012, 22, 2692-2699.                                                         | 14.9 | 254       |
| 3  | Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications, 2012, 48, 4145.                                               | 4.1  | 215       |
| 4  | Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO <sub>2</sub> Reduction to CO. ACS Energy Letters, 2019, 4, 666-672.                 | 17.4 | 183       |
| 5  | Znâ^'Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting. Journal of the American<br>Chemical Society, 2009, 131, 15621-15623.                                                   | 13.7 | 177       |
| 6  | Energy efficient electrochemical reduction of CO <sub>2</sub> to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.                     | 30.8 | 125       |
| 7  | The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications, 2008, , 4741.                                                                                 | 4.1  | 97        |
| 8  | A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo- and<br>Electrochemical Control. Journal of the American Chemical Society, 2011, 133, 5453-5462.       | 13.7 | 96        |
| 9  | Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry<br>C, 2010, 114, 3276-3279.                                                                | 3.1  | 94        |
| 10 | Ionic liquid electrolyte porphyrin dye sensitised solar cells. Chemical Communications, 2010, 46, 3146.                                                                                             | 4.1  | 92        |
| 11 | A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide<br>Reduction. Advanced Energy Materials, 2018, 8, 1801280.                                         | 19.5 | 88        |
| 12 | Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a<br>Versatile Antifouling Coating System. ACS Applied Materials & Interfaces, 2017, 9, 18584-18594. | 8.0  | 87        |
| 13 | Novel Regiospecific MDMOâ^'PPV Copolymer with Improved Charge Transport for Bulk Heterojunction<br>Solar Cells. Journal of Physical Chemistry B, 2004, 108, 5235-5242.                              | 2.6  | 86        |
| 14 | An erodible polythiophene-based composite for biomedical applications. Journal of Materials<br>Chemistry, 2011, 21, 5555.                                                                           | 6.7  | 83        |
| 15 | An intermediate band dye-sensitised solar cell using triplet–triplet annihilation. Physical Chemistry<br>Chemical Physics, 2015, 17, 24826-24830.                                                   | 2.8  | 77        |
| 16 | Highly Stretchable Conducting SIBSâ€₽3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962.                                                                                                  | 14.9 | 76        |
| 17 | Photoâ€Chemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26,<br>7339-7345.                                                                                   | 21.0 | 64        |
| 18 | High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells.<br>Journal of Physical Chemistry C, 2009, 113, 1998-2003.                                         | 3.1  | 61        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Determining the Orientation and Molecular Packing of Organic Dyes on a TiO <sub>2</sub> Surface<br>Using X-ray Reflectometry. Langmuir, 2011, 27, 12944-12950.                                                                       | 3.5  | 57        |
| 20 | Novel nanographene/porphyrin hybrids – preparation, characterization, and application in solar energy conversion schemes. Chemical Science, 2013, 4, 3085.                                                                           | 7.4  | 57        |
| 21 | Direct exfoliation of graphite with a porphyrin – creating functionalizable nanographene hybrids.<br>Chemical Communications, 2012, 48, 8745.                                                                                        | 4.1  | 56        |
| 22 | Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells:<br>Inhomogeniety Limits the Efficiency. Journal of Physical Chemistry C, 2011, 115, 22084-22088.                                           | 3.1  | 53        |
| 23 | Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synthetic Metals, 2010, 160, 76-82.                                                                                                                | 3.9  | 51        |
| 24 | Conjugated polymers based on new thienylene – PPV derivatives for solar cell applications.<br>Electrochemistry Communications, 2002, 4, 912-916.                                                                                     | 4.7  | 49        |
| 25 | Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment. Energy and Environmental Science, 2009, 2, 1069.                                                                            | 30.8 | 49        |
| 26 | Moving Droplets in 3D Using Light. Advanced Materials, 2018, 30, e1801821.                                                                                                                                                           | 21.0 | 49        |
| 27 | Significant Performance Improvement of Porphyrin-Sensitized TiO <sub>2</sub> Solar Cells under<br>White Light Illumination. Journal of Physical Chemistry C, 2011, 115, 317-326.                                                     | 3.1  | 42        |
| 28 | A novel donor–acceptor carbazole and benzothiadiazole material for deep red and infrared emitting<br>applications. Journal of Materials Chemistry C, 2016, 4, 2219-2227.                                                             | 5.5  | 40        |
| 29 | Linker Conjugation Effects in Rhenium(I) Bifunctional Holeâ€Transport/Emitter Molecules. Chemistry - A<br>European Journal, 2009, 15, 3682-3690.                                                                                     | 3.3  | 39        |
| 30 | A Porphyrinâ€Doped Polymer Catalyzes Selective, Lightâ€Assisted Water Oxidation in Seawater.<br>Angewandte Chemie - International Edition, 2012, 51, 1907-1910.                                                                      | 13.8 | 39        |
| 31 | Design and engineering of water-soluble light-harvesting protein maquettes. Chemical Science, 2017, 8, 316-324.                                                                                                                      | 7.4  | 38        |
| 32 | Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synthetic Metals, 2012, 162, 2216-2221.                                                                                  | 3.9  | 36        |
| 33 | Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein,<br>Bacteria, and Fungal Spore Adhesion. Langmuir, 2019, 35, 1335-1345.                                                               | 3.5  | 35        |
| 34 | Synthesis, Characterization, and Photophysics of Oxadiazole- and Diphenylaniline-Substituted Re(I) and Cu(I) Complexes. Inorganic Chemistry, 2013, 52, 1304-1317.                                                                    | 4.0  | 34        |
| 35 | Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Applied Physics Letters, 2011, 98, .                                                                                                                   | 3.3  | 33        |
| 36 | A Spectroscopic and Computational Study of the Neutral and Radical Cation Species of Conjugated<br>Aryl-Substituted 2,5-Bis(2-thien-2-ylethenyl)thiophene-Based Oligomers. Journal of Physical Chemistry<br>A, 2007, 111, 7171-7180. | 2.5  | 31        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Indanedione-Substituted Poly(terthiophene)s: Processable Conducting Polymers with Intramolecular<br>Charge Transfer Interactions. Macromolecules, 2010, 43, 3817-3827.                               | 4.8  | 30        |
| 38 | Enhanced performance of dye-sensitized solar cells using carbazole-substituted di-chromophoric porphyrin dyes. Journal of Materials Chemistry A, 2014, 2, 16963-16977.                               | 10.3 | 30        |
| 39 | Enhancement of dye regeneration kinetics in dichromophoric porphyrin–carbazole triphenylamine<br>dyes influenced by more exposed radical cation orbitals. Chemical Science, 2016, 7, 3506-3516.      | 7.4  | 29        |
| 40 | Controlled delivery of drugs adsorbed onto porous Fe 3 O 4 structures by application of AC/DC magnetic fields. Microporous and Mesoporous Materials, 2016, 226, 243-250.                             | 4.4  | 27        |
| 41 | Disorder engineering of undoped TiO <sub>2</sub> nanotube arrays for highly efficient solar-driven oxygen evolution. Physical Chemistry Chemical Physics, 2015, 17, 5642-5649.                       | 2.8  | 24        |
| 42 | Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 2008, 10, 519-522.                              | 4.7  | 23        |
| 43 | Tuning the optical properties of ZnTPP using carbonyl ring fusion. Spectrochimica Acta - Part A:<br>Molecular and Biomolecular Spectroscopy, 2009, 74, 931-935.                                      | 3.9  | 23        |
| 44 | Magnetic nanoparticles for "smart liposomes― European Biophysics Journal, 2015, 44, 647-654.                                                                                                         | 2.2  | 23        |
| 45 | Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of<br>Chemistry, 2012, 65, 577.                                                                               | 0.9  | 22        |
| 46 | A light-assisted, polymeric water oxidation catalyst that selectively oxidizes seawater with a low onset potential. Chemical Science, 2013, 4, 2797.                                                 | 7.4  | 22        |
| 47 | Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte. Chemical Communications, 2011, 47, 9327.                                                                                   | 4.1  | 20        |
| 48 | Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in<br>Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11885-11898. | 3.1  | 20        |
| 49 | Transformation of 5,5-diaryl-4,5-dihydro-1,2,4-oxadiazoles to 4-arylquinazolines. Tetrahedron Letters, 2003, 44, 2015-2017.                                                                          | 1.4  | 19        |
| 50 | Resonance Raman Studies of Î <sup>2</sup> -Substituted Porphyrin Systems with Unusual Electronic Absorption Properties. ChemPhysChem, 2006, 7, 2358-2365.                                            | 2.1  | 19        |
| 51 | Dichromophoric Zinc Porphyrins: Filling the Absorption Gap between the Soret and Q Bands. Journal of Physical Chemistry C, 2015, 119, 5350-5363.                                                     | 3.1  | 19        |
| 52 | Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO <sub>2</sub> . Journal of Materials Chemistry A, 2020, 8, 14966-14974.                           | 10.3 | 19        |
| 53 | Electrochemical CO <sub>2</sub> Reduction Catalyzed by Copper Molecular Complexes: The Influence of Ligand Structure. Energy & Fuels, 2022, 36, 4653-4676.                                           | 5.1  | 19        |
| 54 | Reduction of aromatic nitrocompounds by sodium borohydride in methanol in the presence of sodium methoxide. Tetrahedron, 1996, 52, 9541-9552.                                                        | 1.9  | 18        |

| #          | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55         | Why Do Some Alkoxybromothiophenes Spontaneously Polymerize?. Australian Journal of Chemistry, 2011, 64, 335.                                                                                                                                       | 0.9  | 18        |
| 56         | Systematic elongation of thienyl linkers and their effect on optical and electrochemical properties in carbazole–BODIPY donor–acceptor systems. RSC Advances, 2016, 6, 36500-36509.                                                                | 3.6  | 18        |
| 5 <b>7</b> | Exploiting Intermolecular Interactions between Alkyl-Functionalized Redox-Active Molecule Pairs to<br>Enhance Interfacial Electron Transfer. Journal of the American Chemical Society, 2018, 140, 13935-13944.                                     | 13.7 | 18        |
| 58         | Synthesis and characterization of novel styryl-substituted oligothienylenevinylenes. Tetrahedron, 2006, 62, 2190-2199.                                                                                                                             | 1.9  | 17        |
| 59         | A Nonconjugated Bridge in Dimer-Sensitized Solar Cells Retards Charge Recombination without<br>Decreasing Charge Injection Efficiency. ACS Applied Materials & Interfaces, 2013, 5, 10824-10829.                                                   | 8.0  | 17        |
| 60         | Electrochemically Induced Synthesis of Poly(2,6-carbazole). Macromolecular Rapid Communications, 2015, 36, 1749-1755.                                                                                                                              | 3.9  | 17        |
| 61         | Novel Regiospecific MDMO-PPV Polymers with Improved Charge Transport Properties for Bulk<br>Heterojunction Solar Cells. Synthetic Metals, 2005, 153, 81-84.                                                                                        | 3.9  | 16        |
| 62         | Novel fullerene-functionalised poly(terthiophenes). Journal of Electroanalytical Chemistry, 2007, 599,<br>79-84.                                                                                                                                   | 3.8  | 16        |
| 63         | Probing Donor–Acceptor Interactions in <i>meso</i> -Substituted Zn(II) Porphyrins Using Resonance<br>Raman Spectroscopy and Computational Chemistry. Journal of Physical Chemistry C, 2015, 119,<br>22379-22391.                                   | 3.1  | 16        |
| 64         | Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes.<br>Electrochimica Acta, 2020, 330, 135140.                                                                                                           | 5.2  | 16        |
| 65         | Excited-State Switching Frustrates the Tuning of Properties in Triphenylamine-Donor-Ligand Rhenium(I) and Platinum(II) Complexes. Inorganic Chemistry, 2020, 59, 6736-6746.                                                                        | 4.0  | 16        |
| 66         | An alternative synthesis of β-pyrrolic acetylene-substituted porphyrins. Tetrahedron Letters, 2008, 49, 5632-5635.                                                                                                                                 | 1.4  | 15        |
| 67         | A merocyanine-based conductive polymer. Journal of Materials Chemistry C, 2013, 1, 3913.                                                                                                                                                           | 5.5  | 15        |
| 68         | Two different modes of halogen bonding in two 4-nitroimidazole derivatives. Acta Crystallographica<br>Section C: Crystal Structure Communications, 2007, 63, o454-o457.                                                                            | 0.4  | 14        |
| 69         | Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The<br>Utility of Intermolecular Forces. ACS Applied Materials & Interfaces, 2015, 7, 22078-22083.                                                     | 8.0  | 14        |
| 70         | Electrochemical and photoelectronic studies on C60-pyrrolidine-functionalised poly(terthiophene).<br>Electrochimica Acta, 2014, 141, 51-60.                                                                                                        | 5.2  | 13        |
| 71         | Oximes as intermediates or final products in reactions of nitroheteroarenes with nucleophiles in the presence of sodium methoxideâ€methanol system. Journal of Heterocyclic Chemistry, 2003, 40, 523-528.                                          | 2.6  | 12        |
| 72         | Synergistic Effect of Alkyl Chain Barriers on Heteroleptic Ruthenium Dyes and Co <sup>3+/2+</sup><br>Complex Mediators for Reduced Charge Recombination in Dye-Sensitized Solar Cells. Journal of<br>Physical Chemistry C, 2020, 124, 23013-23026. | 3.1  | 11        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Structural and electronic properties of substituted terthiophenes. Synthetic Metals, 2005, 154, 325-328.                                                                                                       | 3.9  | 10        |
| 74 | Effect of ï€-conjugation on electrochemical properties of poly(terthiophene)s 3′-substituted with fullerene C 60. Journal of Electroanalytical Chemistry, 2016, 772, 103-109.                                  | 3.8  | 10        |
| 75 | Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and<br>Computational Study. Molecules, 2018, 23, 421.                                                           | 3.8  | 10        |
| 76 | Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins<br>and Co <sup>2+/3+</sup> Complex Electrolytes. Journal of Physical Chemistry C, 2020, 124, 9178-9190.        | 3.1  | 10        |
| 77 | Amphiphilic Zinc Porphyrin Singleâ€Walled Carbon Nanotube Hybrids: Efficient Formation and Excited<br>State Charge Transfer Studies. Small, 2021, 17, 2005648.                                                 | 10.0 | 10        |
| 78 | Flexible Tuning of Unsaturated βâ€6ubstituents on Zn Porphyrins: A Synthetic, Spectroscopic and<br>Computational Study. Chemistry - A European Journal, 2015, 21, 15622-15632.                                 | 3.3  | 9         |
| 79 | Mono and di-substituted BODIPY with electron donating carbazole, thiophene, and 3,4-ethylenedioxythiophene units. Electrochimica Acta, 2018, 271, 685-698.                                                     | 5.2  | 9         |
| 80 | Light soaking effect driven in porphyrin dye-sensitized solar cells using 1D TiO2 nanotube<br>photoanodes. Sustainable Materials and Technologies, 2020, 24, e00165.                                           | 3.3  | 9         |
| 81 | Carbazole-substituted dialkoxybenzodithiophene dyes for efficient light harvesting and the effect of alkoxy tail length. Dyes and Pigments, 2021, 186, 109002.                                                 | 3.7  | 9         |
| 82 | Substrate-Dependent Electron-Transfer Rate of Mixed-Ligand Electrolytes: Tuning Electron-Transfer<br>Rate without Changing Driving Force. Journal of the American Chemical Society, 2021, 143, 488-495.        | 13.7 | 9         |
| 83 | Air-to-air enthalpy exchangers: Membrane modification using metal-organic frameworks,<br>characterisation and performance assessment. Journal of Cleaner Production, 2021, 293, 126157.                        | 9.3  | 9         |
| 84 | Raman Spectroscopy of Short-Lived Terthiophene Radical Cations Generated by Photochemical and Chemical Oxidation. ChemPhysChem, 2006, 7, 1276-1285.                                                            | 2.1  | 8         |
| 85 | Synergistic Amplification of Water Oxidation Catalysis on Pt by a Thin-Film Conducting Polymer<br>Composite. ACS Applied Energy Materials, 2018, 1, 4235-4246.                                                 | 5.1  | 8         |
| 86 | The Effect of the Dielectric Environment on Electron Transfer Reactions at the Interfaces of<br>Molecular Sensitized Semiconductors in Electrolytes. Journal of Physical Chemistry C, 2020, 124,<br>6979-6992. | 3.1  | 8         |
| 87 | Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water<br>Splitting. Inorganics, 2022, 10, 53.                                                                         | 2.7  | 8         |
| 88 | A flip-disorder in the structure of 3-[2-(anthracen-9-yl)ethenyl]thiophene. Acta Crystallographica<br>Section E: Structure Reports Online, 2006, 62, o5745-o5747.                                              | 0.2  | 7         |
| 89 | Modulation of Electronic Properties in Neutral and Oxidized Oligothiophenes Substituted with<br>Conjugated Polyaromatic Hydrocarbons. Journal of Physical Chemistry A, 2007, 111, 2385-2397.                   | 2.5  | 7         |
| 90 | A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synthetic Metals, 2016, 219, 101-108.                                      | 3.9  | 7         |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite. Catalysis Science and Technology, 2018, 8, 4169-4179.                           | 4.1 | 7         |
| 92  | Aldehyde isomers of porphyrin: A spectroscopic and computational study. Journal of Molecular Structure, 2018, 1173, 665-670.                                                            | 3.6 | 7         |
| 93  | When "Donor–Acceptor―Dyes Delocalize: A Spectroscopic and Computational Study of D–A Dyes<br>Using "Michler's Base― Journal of Physical Chemistry A, 2019, 123, 5957-5968.              | 2.5 | 7         |
| 94  | Rapid spatially-resolved post-synthetic patterning of metal–organic framework films. Chemical<br>Communications, 2021, 57, 4706-4709.                                                   | 4.1 | 7         |
| 95  | A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for<br>Energy-Efficient Bioelectronic Devices. Chemistry of Materials, 2022, 34, 140-151.           | 6.7 | 7         |
| 96  | 2,5-Di-2-thienylthiazolo[4,5-d]thiazole. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o91-o92.                                                         | 0.4 | 6         |
| 97  | Spectroscopic and density functional theory study of functionalized thiophene-benzene derivatives.<br>Journal of Raman Spectroscopy, 2005, 36, 445-452.                                 | 2.5 | 6         |
| 98  | Experimental and Computational Studies of Substituted Terthiophene Oligomers as<br>Electroluminescent Materials. Synthetic Metals, 2005, 153, 225-228.                                  | 3.9 | 6         |
| 99  | 2,5-Bis(2-cyano-2-thienylvinyl)thiophene. Acta Crystallographica Section E: Structure Reports Online,<br>2006, 62, o5931-o5932.                                                         | 0.2 | 6         |
| 100 | 1-(2′-Aminophenyl)- and 1-(2′-hydroxyphenyl)-2-methyl-4-nitroimidazole: Crystallizing with two<br>molecules in the asymmetric unit. Journal of Molecular Structure, 2008, 876, 134-139. | 3.6 | 6         |
| 101 | Electronic Studies on Oligothienylenevinylenes: Understanding the Nature of Their Ground and<br>Excited Electronic States. ChemPhysChem, 2009, 10, 1901-1910.                           | 2.1 | 6         |
| 102 | A Novel Covalently Linked Zn Phthalocyanineâ€Zn Porphyrin Dyad for Dyeâ€sensitized Solar Cells. Israel<br>Journal of Chemistry, 2016, 56, 175-180.                                      | 2.3 | 6         |
| 103 | Computational and Spectroscopic Analysis of Î <sup>2</sup> -Indandione Modified Zinc Porphyrins. Journal of Physical Chemistry A, 2018, 122, 4448-4456.                                 | 2.5 | 6         |
| 104 | Dual Droplet Functionality: Phototaxis and Photopolymerization. ACS Applied Materials &<br>Interfaces, 2019, 11, 31484-31489.                                                           | 8.0 | 6         |
| 105 | Synergistic Amplification of Oxygen Generation in (Photo)Catalytic Water Splitting by a<br>PEDOT/Nanoâ€Co 3 O 4 /MWCNT Thin Film Composite. ChemCatChem, 2020, 12, 1580-1584.           | 3.7 | 6         |
| 106 | Investigation of Ferrocene Linkers in β-Substituted Porphyrins. Journal of Physical Chemistry A, 2020,<br>124, 5513-5522.                                                               | 2.5 | 6         |
| 107 | Synergistic amplification of (photo)catalytic oxygen and hydrogen generation from water by thin-film polypyrrole composites. Molecular Catalysis, 2020, 490, 110955.                    | 2.0 | 6         |
| 108 | Modified silica nanoparticle coatings: Dual antifouling effects of self-assembled quaternary ammonium and zwitterionic silanes. Biointerphases, 2020, 15, 021009.                       | 1.6 | 6         |

3

| #   | Article                                                                                                                                                                                                                                   | IF                | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 109 | Electrochemical and Spectroelectrochemical Studies on the Reactivity of<br>Perimidine–Carbazole–Thiophene Monomers towards the Formation of Multidimensional<br>Macromolecules versus Stable π-Dimeric States. Materials, 2021, 14, 2167. | 2.9               | 6            |
| 110 | Solid State Photon Up-Conversion Emission from Chromophore-Tethered PPV Films. Journal of Physical Chemistry C, 2021, 125, 14538-14548.                                                                                                   | 3.1               | 6            |
| 111 | Crystal packing of two 5-substituted 2-methyl-4-nitro-1 <i>H</i> -imidazoles. Acta Crystallographica<br>Section C: Crystal Structure Communications, 2007, 63, o445-o447.                                                                 | 0.4               | 5            |
| 112 | Decoloration rates of a photomerocyanine dye as a visual probe into hydrogen bonding interactions.<br>Chemical Communications, 2015, 51, 4815-4818.                                                                                       | 4.1               | 5            |
| 113 | Carboxybetaine functionalized nanosilicas as protein resistant surface coatings. Biointerphases, 2020, 15, 011001.                                                                                                                        | 1.6               | 5            |
| 114 | Photocontrolled directional transport using water-in-oil droplets. New Journal of Chemistry, 2021, 45, 1172-1175.                                                                                                                         | 2.8               | 5            |
| 115 | Electrochemical actuation properties of a novel solution-processable polythiophene. Electrochimica<br>Acta, 2007, 53, 1830-1836.                                                                                                          | 5.2               | 4            |
| 116 | Raman frequency dispersion studies of substituted polythiophene films. International Journal of Nanotechnology, 2009, 6, 344.                                                                                                             | 0.2               | 4            |
| 117 | Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer. RSC Advances, 2018, 8, 29505-29512.                                                                                         | 3.6               | 4            |
| 118 | Polyterthiophenes Crossâ€Linked with Terpyridyl Metal Complexes for Molecular Architecture of<br>Optically and Electrochemically Tunable Materials. ChemElectroChem, 2020, 7, 4453-4459.                                                  | 3.4               | 4            |
| 119 | Reactive Extrusion Printing for Simultaneous Crystallizationâ€Deposition of Metalâ€Organic Frameworks<br>Films. Angewandte Chemie - International Edition, 2022, , .                                                                      | 13.8              | 4            |
| 120 | N-Benzoylthiourea. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o83-o84.                                                                                                                                 | 0.4               | 3            |
| 121 | Facile synthesis of acetylene-substituted terthiophenes. Tetrahedron Letters, 2007, 48, 6245-6248.                                                                                                                                        | 1.4               | 3            |
| 122 | Flip-type disorder in 3-substituted 2,2′:5′,2′′-terthiophenes. Acta Crystallographica Section C: Crystal<br>Structure Communications, 2007, 63, o400-o404.                                                                                | 0.4               | 3            |
| 123 | The electronic characterization of conjugated aryl-substituted 2,5-bis(2-thien-2-ylethenyl)<br>thiophene-based oligomers. Journal of Molecular Structure, 2013, 1047, 80-86.                                                              | 3.6               | 3            |
| 124 | Studies of poly(3,4-ethylenedioxythiophene) (PEDOT) films containing cationic Mn porphyrins. A<br>loading-dependent demetalation of Mn(III)TPP in PEDOT (Mn(III)TPP=5,10,15,20-tetraphenylporphyrinato) Tj ETQo                           | զ <b>@</b> ՁՕ rgE | 3T\$Overlock |
| 125 | Synthesis and Lightâ€Harvesting Potential of Cyanovinyl βâ€Substituted Porphyrins and Dyads. European<br>Journal of Organic Chemistry, 2017, 2017, 5750-5762.                                                                             | 2.4               | 3            |

126Aesthetically Pleasing, Visible Light Transmissive, Luminescent Solar Concentrators Using a BODIPY<br/>Derivative. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800551.1.8

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The impact of insufficient time resolution on dye regeneration lifetime determined using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13001-13010.                                                 | 2.8 | 3         |
| 128 | Electrochemical studies of novel thiophene-tetrazine donor-acceptor hybrids. Tetrahedron Letters, 2021, 68, 152905.                                                                                                                     | 1.4 | 3         |
| 129 | Terthiophene Derivative-Based Photoinitiating Systems for Free Radical and Cationic Polymerization under Blue LEDs. Industrial & Engineering Chemistry Research, 2021, 60, 8733-8742.                                                   | 3.7 | 3         |
| 130 | Exohedral Functionalization of Fullerene by Substituents Controlling of Molecular Organization<br>for Spontaneous C60 Dimerization in Liquid Crystal Solutions and in a Bulk Controlled by a Potential.<br>Polymers, 2021, 13, 2816.    | 4.5 | 3         |
| 131 | Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. Advances in Physics: X, 2021, 6, .                                                          | 4.1 | 3         |
| 132 | Two 1-substituted 4-nitroimidazoles. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 106-108.                                                                                                             | 0.4 | 3         |
| 133 | s-Tetrazine donor-acceptor electrodeposited layer with properties controlled by doping anions generally considered as interchangeable. Electrochimica Acta, 2022, 405, 139788.                                                          | 5.2 | 3         |
| 134 | 2-Methyl-4-nitro-1-(4-nitrophenyl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports<br>Online, 2007, 63, o3083-o3083.                                                                                                  | 0.2 | 2         |
| 135 | Photocatalytic oxygen evolution from non-potable water by a bioinspired molecular water oxidation catalyst. Journal of Molecular Catalysis A, 2011, , .                                                                                 | 4.8 | 2         |
| 136 | Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and<br>Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC). Journal of<br>Composites Science, 2019, 3, 108.        | 3.0 | 2         |
| 137 | Emulating photosynthetic processes with light harvesting synthetic protein (maquette) assemblies on titanium dioxide. Materials Advances, 2020, 1, 1877-1885.                                                                           | 5.4 | 2         |
| 138 | Second-order programming the synthesis of metal–organic frameworks. Chemical Communications, 2020, 56, 12355-12358.                                                                                                                     | 4.1 | 2         |
| 139 | Optical analysis of an integrated solar cell and a photon up converter, providing guidance for future device engineering efforts. Journal of Applied Physics, 2021, 130, 194501.                                                        | 2.5 | 2         |
| 140 | Molecular Geometry Dependent Electronic Coupling and Reorganization Energy for Electron Transfer<br>between Dye Molecule Adsorbed on TiO2 Electrode and Co Complex in Electrolyte Solutions. Journal<br>of Physical Chemistry C, 0, , . | 3.1 | 2         |
| 141 | 1-Phenyl-4-imidazolidinone (Z)-Oxime. Acta Crystallographica Section C: Crystal Structure<br>Communications, 1996, 52, 1462-1464.                                                                                                       | 0.4 | 1         |
| 142 | 3-Methyl-5-nitrouracil. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o1257-o1259.                                                                                                                              | 0.2 | 1         |
| 143 | Electrochemical and UV–Vis/ESR spectroelectrochemical properties of thienylenevinylenes<br>substituted by a 4-cyanostyryl group. Electrochimica Acta, 2011, 56, 4445-4450.                                                              | 5.2 | 1         |
| 144 | 1-(3-Chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carboxamide. Acta Crystallographica Section E:<br>Structure Reports Online, 2011, 67, o2626-o2626.                                                                                   | 0.2 | 1         |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Light Harvesting and Light Activatable Protein Maquettes Designed fromÂScratch. Biophysical Journal,<br>2013, 104, 531a.                                                                       | 0.5 | 1         |
| 146 | Demetallatation of electrochemically polymerised Mn porphyrin anion / PEDOT composites under light-illumination. Synthetic Metals, 2017, 228, 58-63.                                           | 3.9 | 1         |
| 147 | Use of alkylated, amphiphilic zinc porphyrins to disperse individualized SWCNTs. Journal of<br>Porphyrins and Phthalocyanines, 2018, 22, 573-580.                                              | 0.8 | 1         |
| 148 | Investigations of electrochemical and spectroelectrochemical properties (UV-Vis, EPR) of thiophene trimer derivatives substituted with phenylvinyl groups. Polimery, 2009, 54, 209-215.        | 0.7 | 1         |
| 149 | Enhanced Interfacial Electron Transfer Kinetics Between Co <sup>2+/3</sup> + Complexes and Organic<br>Dyes with Free Space Near Their Backbone. Physical Chemistry Chemical Physics, 2022, , . | 2.8 | 1         |
| 150 | 1,4-Bis[(1-methyl-1-phenylethyl)peroxymethyl]benzene. Acta Crystallographica Section C: Crystal<br>Structure Communications, 2002, 58, o549-o550.                                              | 0.4 | 0         |
| 151 | Transformation of 5,5-Diaryl-4,5-dihydro-1,2,4-oxadiazoles to 4-Arylquinazolines ChemInform, 2003, 34, no.                                                                                     | 0.0 | 0         |
| 152 | 1-(4-Chlorophenyl)-2-methyl-4-nitro-5-(1-piperidyl)-1H-imidazole. Acta Crystallographica Section C:<br>Crystal Structure Communications, 2005, 61, o509-o511.                                  | 0.4 | 0         |
| 153 | 1,8,14,20-Tetraoxa-11,23-dithiatricyclo[21.3.0.09,13]hexacosa-9,12,21,24-tetraene. Acta Crystallographica<br>Section C: Crystal Structure Communications, 2006, 62, o155-o156.                 | 0.4 | 0         |
| 154 | 2-Methyl-4-nitro-1-(3-pyridyl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3454-o3454.                                                                | 0.2 | 0         |
| 155 | (Z)-2-Phenyl-3-(2,2′:5′,2′′-terthiophen-3′-yl)acrylonitrile. Acta Crystallographica Section E: Structure<br>Reports Online, 2007, 63, o3054-o3055.                                             | 0.2 | 0         |
| 156 | 2-Methoxy-1-methyl-4-nitro-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3120-o3120.                                                                    | 0.2 | 0         |
| 157 | 5-Methoxy-2-methyl-4-nitro-1-phenyl-1H-imidazole. Acta Crystallographica Section E: Structure Reports<br>Online, 2007, 63, o3587-o3587.                                                        | 0.2 | 0         |
| 158 | Understanding the Ground- and Excited-State Photophysics of Oxadiazole and Triarylamine<br>Substituents in Copper and Rhenium Metal Complexes. , 2010, , .                                     |     | 0         |
| 159 | 5-Chloro-1-phenyl-1H-pyrazol-4-amine. Acta Crystallographica Section E: Structure Reports Online, 2011,<br>67, o2320-o2320.                                                                    | 0.2 | 0         |
| 160 | lsomorphism in Two (E)-1-(4-Halophenyl)-N-[1-(4-Methylphenyl)-1H-Imidazol-4-yl]Methanimines<br>(HalideÂ=ÂCl, Br). Journal of Chemical Crystallography, 2012, 42, 1036-1041.                    | 1.1 | 0         |
| 161 | Properties and characterization of conductive polymers. , 2018, , 41-76.                                                                                                                       |     | 0         |
| 162 | Reactive Extrusion Printing for Simultaneous Crystallizationâ€Deposition of Metalâ€Organic Frameworks<br>Films. Angewandte Chemie, 0, , .                                                      | 2.0 | 0         |