Anuska Mosquera-Corral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8103063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cultivable microalgae diversity from a freshwater aquaculture filtering system and its potential for polishing aquacultureâ€derived water streams. Journal of Applied Microbiology, 2022, 132, 1543-1556.	1.4	2
2	Performance of a two-stage partial nitritation-anammox system treating the supernatant of a sludge anaerobic digester pretreated by a thermal hydrolysis process. Chemical Engineering Journal, 2022, 429, 131301.	6.6	10
3	Valorization of lipid-rich wastewaters: A theoretical analysis to tackle the competition between polyhydroxyalkanoate and triacylglyceride-storing populations. Science of the Total Environment, 2022, 807, 150761.	3.9	4
4	Modeling the Impact of Salinity Variations on Aquatic Environments: Including Negative and Positive Effects in Life Cycle Assessment. Environmental Science & Technology, 2022, 56, 874-884.	4.6	4
5	Factors That Affect Methane Yield Using Raw Olive Alperujo (Unhydrolyzed) as Substrate in BMP Assays. Recycling, 2022, 7, 15.	2.3	0
6	Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries. Polymers, 2022, 14, 1396.	2.0	10
7	How can we validate the environmental profile of bioplastics? Towards the introduction of polyhydroxyalkanoates (PHA) in the value chains. , 2022, , 405-429.		3
8	Simplified engineering design towards a competitive lipid-rich effluents valorization. Journal of Environmental Management, 2022, 317, 115433.	3.8	3
9	Membrane Fouling Mitigation in MBR via the Feast–Famine Strategy to Enhance PHA Production by Activated Sludge. Membranes, 2022, 12, 703.	1.4	3
10	Is the ammonia stripping pre-treatment suitable for the nitrogen removal via partial nitritation-anammox of OFMSW digestate?. Journal of Hazardous Materials, 2021, 403, 123458.	6.5	7
11	Understanding the microbial trends in a nitritation reactor fed with primary settled municipal wastewater. Separation and Purification Technology, 2021, 256, 117828.	3.9	5
12	Mainstream anammox reactor performance treating municipal wastewater and batch study of temperature, pH and organic matter concentration cross-effects. Chemical Engineering Research and Design, 2021, 145, 195-202.	2.7	16
13	A novel strategy for triacylglycerides and polyhydroxyalkanoates production using waste lipids. Science of the Total Environment, 2021, 763, 142944.	3.9	15
14	Monitoring the stability of aerobic granular sludge using fractal dimension analysis. Environmental Science: Water Research and Technology, 2021, 7, 706-713.	1.2	2
15	Salinity is the major driver of the global eukaryotic community structure in fish-canning wastewater treatment plants. Journal of Environmental Management, 2021, 290, 112623.	3.8	10
16	Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA). Bioresource Technology, 2021, 334, 124964.	4.8	8
17	Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents. Water Research, 2021, 201, 117293.	5.3	20
18	Bioconversion of Organic Pollutants in Fish-Canning Wastewater into Volatile Fatty Acids and Polyhydroxyalkanoate. International Journal of Environmental Research and Public Health, 2021, 18, 10176.	1.2	1

#	Article	IF	CITATIONS
19	Open-culture biotechnological process for triacylglycerides and polyhydroxyalkanoates recovery from industrial waste fish oil under saline conditions. Separation and Purification Technology, 2021, 270, 118805.	3.9	8
20	Features of aerobic granular sludge formation treating fluctuating industrial saline wastewater at pilot scale. Journal of Environmental Management, 2021, 296, 113135.	3.8	12
21	Revealing the dissimilar structure of microbial communities in different WWTPs that treat fish-canning wastewater with different NaCl content. Journal of Water Process Engineering, 2021, 44, 102328.	2.6	16
22	Digested blackwater treatment in a partial nitritation-anammox reactor under repeated starvation and reactivation periods. Journal of Cleaner Production, 2020, 244, 118733.	4.6	8
23	Transformation of organic contamination from wastewater into bioplastics (polyhydroxyalkanoate) by microorganisms. , 2020, , 415-433.		4
24	Environmental assessment of complex wastewater valorisation by polyhydroxyalkanoates production. Science of the Total Environment, 2020, 744, 140893.	3.9	22
25	Recovery of Polyhydroxyalkanoates from Cooked Mussel Processing Wastewater at High Salinity and Acidic Conditions. Sustainability, 2020, 12, 10386.	1.6	6
26	Volatile fatty acid production from saline cooked mussel processing wastewater at low pH. Science of the Total Environment, 2020, 732, 139337.	3.9	15
27	Optimization of an enriched mixed culture to increase PHA accumulation using industrial saline complex wastewater as a substrate. Chemosphere, 2020, 247, 125873.	4.2	33
28	Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants?. Water (Switzerland), 2020, 12, 1118.	1.2	62
29	Limits of the anammox process in granular systems to remove nitrogen at low temperature and nitrogen concentration. Chemical Engineering Research and Design, 2020, 138, 349-355.	2.7	5
30	Assessment of a fast method to predict the biochemical methane potential based on biodegradable COD obtained by fractionation respirometric tests. Journal of Environmental Management, 2020, 269, 110695.	3.8	5
31	Sistemas granulares aerobios para el tratamiento descentralizado de aguas servidas y su reutilizaciÃ ³ n en condominios en Chile. Ingeniare, 2020, 28, 346-357.	0.1	0
32	Effects of short- and long-term exposures of humic acid on the Anammox activity and microbial community. Environmental Science and Pollution Research, 2019, 26, 19012-19024.	2.7	45
33	Potential impact on the recruitment of chemical engineering graduates due to the industrial internship. Education for Chemical Engineers, 2019, 26, 107-113.	2.8	12
34	Potential of endogenous PHA as electron donor for denitrification. Science of the Total Environment, 2019, 695, 133747.	3.9	21
35	High-Yield Synthesis of Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Copolymers in a Mixed Microbial Culture: Effect of Substrate Switching and F/M Ratio. Industrial & Engineering Chemistry Research, 2019, 58, 21921-21926.	1.8	14
36	Performance of partial nitritation-anammox processes at mainstream conditions in an IFAS system. Journal of Environmental Management, 2019, 250, 109538.	3.8	29

#	Article	IF	CITATIONS
37	Predicting Accumulation of Intermediate Compounds in Nitrification and Autotrophic Denitrification Processes: A Chemical Approach. BioMed Research International, 2019, 2019, 1-9.	0.9	1
38	Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. Frontiers in Sustainable Food Systems, 2019, 2, .	1.8	58
39	Pulsed aeration enhances aerobic granular biomass properties. Biochemical Engineering Journal, 2019, 149, 107244.	1.8	3
40	Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents?. Chemosphere, 2019, 226, 865-873.	4.2	44
41	Comparative study on pilots between ANAMMOX favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment. Science of the Total Environment, 2019, 670, 644-653.	3.9	35
42	Determination of the intrinsic kinetic parameters of ammonia-oxidizing and nitrite-oxidizing bacteria in granular and flocculent sludge. Separation and Purification Technology, 2019, 213, 571-577.	3.9	16
43	How to cope with NOB activity and pig manure inhibition in a partial nitritation-anammox process?. Separation and Purification Technology, 2019, 212, 396-404.	3.9	11
44	PHA accumulation of a mixed microbial culture co-exists with ammonia partial nitritation. Chemical Engineering Journal, 2019, 360, 1255-1261.	6.6	26
45	Feasible microbial accumulation of triacylglycerides from crude glycerol. Journal of Chemical Technology and Biotechnology, 2018, 93, 2644-2651.	1.6	9
46	Pilot-scale ELAN ® process applied to treat primary settled urban wastewater at low temperature via partial nitritation-anammox processes. Separation and Purification Technology, 2018, 200, 94-101.	3.9	40
47	Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable saltÂconcentrations. Journal of Environmental Management, 2018, 208, 112-121.	3.8	43
48	Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents. Chemosphere, 2018, 194, 131-138.	4.2	44
49	Novel system configuration with activated sludge like-geometry to develop aerobic granular biomass under continuous flow. Bioresource Technology, 2018, 267, 778-781.	4.8	14
50	Bottom-up approach in the assessment of environmental impacts and costs of an innovative anammox-based process for nitrogen removal. Journal of Environmental Management, 2018, 225, 112-119.	3.8	13
51	Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Separation and Purification Technology, 2017, 186, 55-62.	3.9	48
52	Short- and long-term orange dye effects on ammonium oxidizing and anammox bacteria activities. Water Science and Technology, 2017, 76, 79-86.	1.2	4
53	Biomass aggregation influences NaN3 short-term effects on anammox bacteria activity. Water Science and Technology, 2017, 75, 1007-1013.	1.2	4
54	Partial Nitritation-Anammox Granules: Short-Term Inhibitory Effects of Seven Metals on Anammox Activity. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	15

#	Article	IF	CITATIONS
55	Granular biomass floatation: A simple kinetic/stoichiometric explanation. Chemical Engineering Journal, 2017, 311, 63-71.	6.6	24
56	Effects of Inoculum Type and Aeration Flowrate on the Performance of Aerobic Granular SBRs. Processes, 2017, 5, 41.	1.3	7
57	Effect of Free Ammonia, Free Nitrous Acid, and Alkalinity on the Partial Nitrification of Pretreated Pig Slurry, Using an Alternating Oxic/Anoxic SBR. BioMed Research International, 2017, 2017, 1-7.	0.9	8
58	Anammox Process. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 264-289.	0.3	3
59	Nutrients Pollution in Water Bodies. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 21-42.	0.3	1
60	Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. Journal of Chemistry, 2016, 2016, 1-12.	0.9	91
61	Transformations, Treatment, and Prevention of Water Pollutants. Journal of Chemistry, 2016, 2016, 1-2.	0.9	0
62	Bacterial community dynamics in longâ€ŧerm operation of a pilot plant using aerobic granular sludge to treat pig slurry. Biotechnology Progress, 2016, 32, 1212-1221.	1.3	28
63	The granular biomass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration. Process Biochemistry, 2016, 51, 2134-2142.	1.8	52
64	NaCl presence and purification affect the properties of mixed culture PHAs. European Polymer Journal, 2016, 85, 256-265.	2.6	14
65	Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture. Journal of Hazardous Materials, 2016, 306, 332-339.	6.5	28
66	Advanced technologies for water treatment and reuse. AICHE Journal, 2015, 61, 3146-3158.	1.8	67
67	Filamentous bacteria existence in aerobic granular reactors. Bioprocess and Biosystems Engineering, 2015, 38, 841-851.	1.7	56
68	Integration of the Anammox process to the rejection water and main stream lines of WWTPs. Chemosphere, 2015, 140, 99-105.	4.2	80
69	Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®. Water Science and Technology, 2015, 72, 520-527.	1.2	43
70	Optimizing upflow velocity and calcium precipitation in denitrifying granular systems. Process Biochemistry, 2015, 50, 1656-1661.	1.8	9
71	Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation. Environmental Technology (United Kingdom), 2014, 35, 383-390.	1.2	29
72	Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture. Water Research, 2014, 66, 190-198.	5.3	30

#	Article	IF	CITATIONS
73	Implications of full-scale implementation of an anammox-based process as post-treatment of a municipal anaerobic sludge digester operated with co-digestion. Water Science and Technology, 2014, 69, 1151-1158.	1.2	33
74	Anaerobic digestion of aerobic granular biomass: effects of thermal preâ€ŧreatment and addition of primary sludge. Journal of Chemical Technology and Biotechnology, 2014, 89, 690-697.	1.6	24
75	Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere, 2014, 97, 10-15.	4.2	86
76	Influence of the shear stress and salinity on Anammox biofilms formation: modelling results. Bioprocess and Biosystems Engineering, 2014, 37, 1955-1961.	1.7	18
77	Comparison of the anaerobic digestion of activated and aerobic granular sludges under brackish conditions. Chemical Engineering Journal, 2013, 231, 449-454.	6.6	23
78	Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process Biochemistry, 2013, 48, 1216-1221.	1.8	49
79	A novel control strategy for enhancing biological N-removal in a granular sequencing batch reactor: A model-based study. Chemical Engineering Journal, 2013, 232, 468-477.	6.6	24
80	Effects of the cycle distribution on the performance of SBRs with aerobic granular biomass. Environmental Technology (United Kingdom), 2013, 34, 1463-1472.	1.2	8
81	Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water Research, 2013, 47, 1209-1217.	5.3	48
82	Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors. Biotechnology and Bioengineering, 2013, 110, 3148-3155.	1.7	26
83	AEROBIC GRANULATION PROCESS FOR WASTE TREATMENT. , 2012, , 475-509.		Ο
84	Use of biopolymers as solid substrates for denitrification. Water Science and Technology, 2012, 65, 105-111.	1.2	7
85	Autotrophic denitrification with sulphide in a sequencing batch reactor. Journal of Environmental Management, 2012, 113, 552-556.	3.8	52
86	Is the CANON reactor an alternative for nitrogen removal from pre-treated swine slurry?. Biochemical Engineering Journal, 2012, 65, 23-29.	1.8	50
87	Aerobic granular-type biomass development in a continuous stirred tank reactor. Separation and Purification Technology, 2012, 89, 199-205.	3.9	32
88	Denitrifying activity via nitrite and N2O production using acetate and swine wastewater. Process Biochemistry, 2012, 47, 1202-1206.	1.8	12
89	Short- and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management, 2012, 95, S170-S174.	3.8	200
90	Aerobic granular SBR systems applied to the treatment of industrial effluents. Journal of Environmental Management, 2012, 95, S88-S92.	3.8	44

ANUSKA MOSQUERA-CORRAL

#	Article	IF	CITATIONS
91	Effect of coagulantâ€flocculant reagents on aerobic granular biomass. Journal of Chemical Technology and Biotechnology, 2012, 87, 908-913.	1.6	14
92	Thermal pre-treatment of aerobic granular sludge: Impact on anaerobic biodegradability. Water Research, 2011, 45, 6011-6020.	5.3	57
93	Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal. Journal of Chemical Technology and Biotechnology, 2011, 86, 763-768.	1.6	39
94	Autotrophic nitrogen removal at low temperature. Water Science and Technology, 2011, 63, 1282-1288.	1.2	84
95	Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater. Water Science and Technology, 2011, 63, 1880-1886.	1.2	6
96	Treatment of high loaded swine slurry in an aerobic granular reactor. Water Science and Technology, 2011, 63, 1808-1814.	1.2	30
97	Aerobic granulation in a mechanical stirred SBR: treatment of low organic loads. Water Science and Technology, 2011, 64, 155-161.	1.2	16
98	Modelling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration. Biochemical Engineering Journal, 2010, 49, 173-184.	1.8	27
99	Monitoring the stability of an Anammox reactor under high salinity conditions. Biochemical Engineering Journal, 2010, 51, 167-171.	1.8	93
100	Nitrifying granular systems: A suitable technology to obtain stable partial nitrification at room temperature. Separation and Purification Technology, 2010, 74, 178-186.	3.9	49
101	Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research, 2010, 44, 4359-4370.	5.3	101
102	Characteristics of nitrifying granules developed in an air pulsing SBR. Process Biochemistry, 2009, 44, 602-606.	1.8	36
103	N2O Production by Nitrifying Biomass Under Anoxic and Aerobic Conditions. Applied Biochemistry and Biotechnology, 2009, 152, 189-198.	1.4	17
104	Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. Journal of Hazardous Materials, 2009, 166, 336-341.	6.5	107
105	Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics. Process Biochemistry, 2009, 44, 494-498.	1.8	93
106	Ozonation strategies to reduce sludge production of a seafood industry WWTP. Bioresource Technology, 2009, 100, 1069-1073.	4.8	89
107	Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature. Bioresource Technology, 2009, 100, 2988-2994.	4.8	89
108	Post-treatment of effluents from anaerobic digesters by the Anammox process. Water Science and Technology, 2009, 60, 1135-1143.	1.2	27

#	Article	IF	CITATIONS
109	Population dynamics of nitrite oxidizers in nitrifying granules. Water Science and Technology, 2009, 60, 2529-2536.	1.2	6
110	Activated sludge versus aerated lagoon treatment of kraft mill effluents containing Î ² -sitosterol and stigmasterol. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 327-335.	0.9	17
111	Biofilm and granular systems to improve Anammox biomass retention. Biochemical Engineering Journal, 2008, 42, 308-313.	1.8	196
112	Anaerobic treatment of low-strength synthetic TCF effluents and biomass adhesion in fixed-bed systems. Bioprocess and Biosystems Engineering, 2008, 31, 535-540.	1.7	2
113	Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials, 2008, 154, 688-693.	6.5	276
114	Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technology, 2008, 99, 1293-1299.	4.8	101
115	Influence of gas flow-induced shear stress on the operation of the Anammox process in a SBR. Chemosphere, 2008, 72, 1687-1693.	4.2	32
116	Treatment of saline wastewater in SBR aerobic granular reactors. Water Science and Technology, 2008, 58, 479-485.	1.2	93
117	Stability of a nitrifying activated sludge reactor. Biochemical Engineering Journal, 2007, 35, 87-92.	1.8	37
118	Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 2007, 40, 859-865.	1.6	480
119	Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). Journal of Biotechnology, 2006, 123, 453-463.	1.9	93
120	Anammox process for nitrogen removal from anaerobically digested fish canning effluents. Water Science and Technology, 2006, 53, 265-274.	1.2	59
121	Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochemistry, 2005, 40, 3109-3118.	1.8	216
122	Multiple analysis reprogrammable titration analyser for the kinetic characterization of nitrifying and autotrophic denitrifying biomass. Biochemical Engineering Journal, 2005, 26, 176-183.	1.8	22
123	Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 2005, 39, 2676-2686.	5.3	198
124	Improvement of the settling properties of Anammox sludge in an SBR. Journal of Chemical Technology and Biotechnology, 2004, 79, 1417-1420.	1.6	57
125	Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 2004, 38, 3389-3399.	5.3	202
126	Stability of the ANAMMOX process in a gas-lift reactor and a SBR. Journal of Biotechnology, 2004, 110, 159-170.	1.9	194

#	Article	IF	CITATIONS
127	Degradation of polymers in a biofilm airlift suspension reactor. Water Research, 2003, 37, 485-492.	5.3	32
128	Coupled BAS and anoxic USB system to remove urea and formaldehyde from wastewater. Water Research, 2003, 37, 3445-3451.	5.3	41
129	Combined System for Biological Removal of Nitrogen and Carbon from a Fish Cannery Wastewater. Journal of Environmental Engineering, ASCE, 2003, 129, 826-833.	0.7	11
130	Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Research, 2002, 36, 2555-2560.	5.3	149
131	Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory. Enzyme and Microbial Technology, 2002, 31, 976-985.	1.6	38
132	Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry. Water Research, 2001, 35, 411-418.	5.3	71
133	Simple methods for the determination of the denitrifying activity of sludges. Bioresource Technology, 2000, 75, 1-6.	4.8	18
134	Development and application of a denitrification test based on gas production. Water Science and Technology, 2000, 41, 113-120.	1.2	28