
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8102181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transplantation of Human Embryonic StemÂCell–Derived Cardiovascular Progenitors for SevereÂlschemic LeftÂVentricular Dysfunction. Journal of the American College of Cardiology, 2018, 71, 429-438.	1.2	336
2	Desmin Is Essential for the Tensile Strength and Integrity of Myofibrils but Not for Myogenic Commitment, Differentiation, and Fusion of Skeletal Muscle. Journal of Cell Biology, 1997, 139, 129-144.	2.3	318
3	Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet, The, 2005, 366, 1005-1012.	6.3	270
4	Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomaterialia, 2017, 48, 20-40.	4.1	230
5	Myosin heavy chain isoforms in postnatal muscle development of mice. Biology of the Cell, 2003, 95, 399-406.	0.7	220
6	Comparison of human skeletal myoblasts and bone marrow-derived CD133+progenitors for the repair of infarcted myocardium. Journal of the American College of Cardiology, 2004, 44, 458-463.	1.2	145
7	Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. European Heart Journal, 2015, 36, 743-750.	1.0	137
8	Acellular therapeutic approach for heart failure: inÂvitro production of extracellular vesicles from human cardiovascular progenitors. European Heart Journal, 2018, 39, 1835-1847.	1.0	137
9	A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nature Communications, 2017, 8, 400.	5.8	123
10	Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 2008, 10, 1065-1072.	2.9	119
11	Cell Delivery: Intramyocardial Injections or Epicardial Deposition? A Head-to-Head Comparison. Annals of Thoracic Surgery, 2009, 87, 1196-1203.	0.7	112
12	A Nonionic Amphiphile Agent Promotes Gene DeliveryIn Vivoto Skeletal and Cardiac Muscles. Human Gene Therapy, 2002, 13, 1767-1775.	1.4	104
13	Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovascular Research, 2011, 91, 483-491.	1.8	104
14	Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. Journal of Heart and Lung Transplantation, 2015, 34, 1198-1207.	0.3	80
15	Analysis of skeletal and cardiac muscle from desmin knockâ€out and normal mice by high resolution separation of myosin heavyâ€chain isoforms. Biology of the Cell, 1996, 88, 131-135.	0.7	79
16	GFP expression in muscle cells impairs actin-myosin interactions: implications for cell therapy. Nature Methods, 2006, 3, 331-331.	9.0	72
17	Green Fluorescent Protein Impairs Actin-Myosin Interactions by Binding to the Actin-binding Site of Myosin. Journal of Biological Chemistry, 2007, 282, 10465-10471.	1.6	67
18	Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R444-R454.	0.9	65

#	Article	IF	CITATIONS
19	Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials, 2016, 80, 157-168.	5.7	65
20	Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy. Cardiovascular Research, 2003, 58, 451-459.	1.8	62
21	Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate) Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 2388-2400.	2.6	60
22	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
23	Heart on a chip: Micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering. Microelectronic Engineering, 2019, 203-204, 44-62.	1.1	59
24	Age-related appearance of tubular aggregates in the skeletal muscle of almost all male inbred mice. Histochemistry and Cell Biology, 2000, 114, 477-481.	0.8	58
25	Vimentin: Regulation and pathogenesis. Biochimie, 2022, 197, 96-112.	1.3	49
26	Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cytoskeleton, 2001, 49, 51-66.	4.4	48
27	Chitosan Hydrogels for the Regeneration of Infarcted Myocardium: Preparation, Physicochemical Characterization, and Biological Evaluation. Biomacromolecules, 2016, 17, 1662-1672.	2.6	46
28	Changes in Myotonic Dystrophy Protein Kinase Levels and Muscle Development in Congenital Myotonic Dystrophy. American Journal of Pathology, 2003, 162, 1001-1009.	1.9	45
29	Voluntary Physical Activity Protects from Susceptibility to Skeletal Muscle Contraction–Induced Injury But Worsens Heart Function in mdx Mice. American Journal of Pathology, 2013, 182, 1509-1518.	1.9	45
30	A discrepancy resolved: human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscular Disorders, 2001, 11, 747-752.	0.3	37
31	Fabrication of cardiac patch by using electrospun collagen fibers. Microelectronic Engineering, 2015, 144, 46-50.	1.1	37
32	Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium?. Cardiovascular Research, 2006, 72, 175-183.	1.8	34
33	Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperoneâ€responsive myopathy. EMBO Journal, 2019, 38, .	3.5	34
34	MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2017, 4, 73.	1.1	32
35	Synemin acts as a regulator of signalling molecules in skeletal muscle hypertrophy. Journal of Cell Science, 2014, 127, 4589-601.	1.2	31
36	Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1508-R1514.	0.9	28

#	Article	IF	CITATIONS
37	Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skeletal Muscle, 2016, 6, 23.	1.9	28
38	Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skeletal Muscle, 2013, 3, 4.	1.9	27
39	PREPARATION OF ISOLATED HUMAN MUSCLE FIBERS: A TECHNICAL REPORT. In Vitro Cellular and Developmental Biology - Animal, 2002, 38, 66.	0.7	26
40	Long-Term Functional Benefits of Epicardial Patches as Cell Carriers. Cell Transplantation, 2014, 23, 87-96.	1.2	26
41	Desmin mutations in the terminal consensus motif prevent synemin-desmin heteropolymer filament assembly. Experimental Cell Research, 2011, 317, 886-897.	1.2	25
42	Impaired Adaptive Response to Mechanical Overloading in Dystrophic Skeletal Muscle. PLoS ONE, 2012, 7, e35346.	1.1	25
43	Vimentin as a target for the treatment of COVID-19. BMJ Open Respiratory Research, 2020, 7, e000623.	1.2	25
44	Myosin Heavy Chain Expression in Human Laryngeal Muscle Fibers. Annals of Otology, Rhinology and Laryngology, 2000, 109, 216-220.	0.6	22
45	Efficacy of epicardially delivered adipose stroma cell sheets in dilated cardiomyopathy. Cardiovascular Research, 2013, 99, 640-647.	1.8	22
46	Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle. FEBS Letters, 2004, 561, 191-194.	1.3	21
47	TGF-β1 favors the development of fast type identity during soleus muscle regeneration. Journal of Muscle Research and Cell Motility, 2006, 27, 1-8.	0.9	21
48	Analysis of skeletal and cardiac muscle from desmin knock-out and normal mice by high resolution separation of myosin heavy-chain isoforms. , 1996, 88, 131.		21
49	Epo Is Relevant Neither for Microvascular Formation Nor for the New Formation and Maintenance of Mice Skeletal Muscle Fibres in Both Normoxia and Hypoxia. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	20
50	Improvement of Dystrophic Muscle Fragility by Short-Term Voluntary Exercise through Activation of Calcineurin Pathway in mdx Mice. American Journal of Pathology, 2018, 188, 2662-2673.	1.9	20
51	Protective effect of female gender–related factors on muscle forceâ€generating capacity and fragility in the dystrophic <i>mdx</i> mouse. Muscle and Nerve, 2013, 48, 68-75.	1.0	19
52	Myofiber Androgen Receptor Promotes Maximal Mechanical Overload-Induced Muscle Hypertrophy and Fiber Type Transition in Male Mice. Endocrinology, 2014, 155, 4739-4748.	1.4	18
53	Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in <i>mdx</i> mice of both genders. Muscle and Nerve, 2015, 52, 788-794.	1.0	17
54	Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic <i>mdx</i> mouse. Journal of Physiology, 2020, 598, 3667-3689.	1.3	17

#	Article	IF	CITATIONS
55	Efficacy of epicardial implantation of acellular chitosan hydrogels in ischemic and nonischemic heart failure: impact of the acetylation degree of chitosan. Acta Biomaterialia, 2021, 119, 125-139.	4.1	17
56	Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. American Journal of Pathology, 2015, 185, 2012-2024.	1.9	15
57	Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E12-E25.	1.8	15
58	Dynamic expression of synemin isoforms in mouse embryonic stem cells and neural derivatives. BMC Cell Biology, 2011, 12, 51.	3.0	14
59	Polyacrylamide Hydrogels with Rigidity-Independent Surface Chemistry Show Limited Long-Term Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells on Soft Substrates. ACS Biomaterials Science and Engineering, 2020, 6, 340-351.	2.6	14
60	Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants. American Journal of Physiology - Cell Physiology, 2020, 318, C709-C718.	2.1	14
61	Differential Modification of Myosin Heavy Chain Expression by Tenotomy in Regenerating Fast and Slow Muscles of the Rat. Experimental Physiology, 2000, 85, 187-191.	0.9	13
62	Voluntary Exercise Improves Cardiac Function and Prevents Cardiac Remodeling in a Mouse Model of Dilated Cardiomyopathy. Frontiers in Physiology, 2017, 8, 899.	1.3	13
63	Overcoming bacterial DNA contamination in real-time PCR and RT-PCR reactions for LacZ detection in cell therapy monitoring. Molecular and Cellular Probes, 2004, 18, 437-441.	0.9	12
64	Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscular Disorders, 2014, 24, 960-972.	0.3	11
65	3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 2022, 7, 275-291.	8.6	11
66	Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals. Journal of Biological Chemistry, 2017, 292, 1603-1612.	1.6	10
67	Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies. Experimental Cell Research, 2019, 383, 111539.	1.2	9
68	Absence of Desmin Results in Impaired Adaptive Response to Mechanical Overloading of Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2021, 9, 662133.	1.8	8
69	Desmin Modulates Muscle Cell Adhesion and Migration. Frontiers in Cell and Developmental Biology, 2022, 10, 783724.	1.8	7
70	Polysaccharide–Protein Multilayers Based on Chitosan–Fibrinogen Assemblies for Cardiac Cell Engineering. Macromolecular Bioscience, 2022, 22, e2100346.	2.1	5
71	Skeletal muscle intrinsic functional properties are preserved in a model of erythropoietin deficient mice exposed to hypoxia. Pflugers Archiv European Journal of Physiology, 2010, 459, 713-723.	1.3	4
72	Skeletal muscle glycogen phosphorylase is irreversibly inhibited by mercury: Molecular, cellular and kinetic aspects. FEBS Letters, 2014, 588, 138-142.	1.3	4

#	Article	IF	CITATIONS
73	Distinct Fiber Type Signature in Mouse Muscles Expressing a Mutant Lamin A Responsible for Congenital Muscular Dystrophy in a Patient. Cells, 2017, 6, 10.	1.8	4
74	Differential Modification of Myosin Heavy Chain Expression by Tenotomy in Regenerating Fast and Slow Muscles of the Rat. , 2000, 85, 187.		4
75	Effects of the selective inhibition of proteasome caspase-like activity by CLi a derivative of nor-cerpegin in dystrophic mdx mice. PLoS ONE, 2019, 14, e0215821.	1.1	3
76	The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle. PLoS ONE, 2022, 17, e0254274.	1.1	3
77	Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability. Bioengineering, 2022, 9, 313.	1.6	3
78	3D Magnetic Alignment of Cardiac Cells in Hydrogels. ACS Applied Bio Materials, 2020, 3, 6802-6810.	2.3	2
79	Reply to "GFP fails to inhibit actin-myosin interactions in vitro― Nature Methods, 2008, 5, 213-214.	9.0	1
80	The Role of Genetics in Cardiomyopathy. , 0, , .		1
81	Supercooled Liquid Serum Physiologic Solution Instantly Crystallized on the Nurse Table Used for Cooling of Periorbital Region During Rhinoplasty. Aesthetic Plastic Surgery, 2019, 43, 453-456.	0.5	1
82	An Advantageous Donor Site Alternative for Preparing Crushed Cartilage Graft: The Postero-inferior Part of the Septal Cartilage. Indian Journal of Otolaryngology and Head and Neck Surgery, 2020, , 1.	0.3	1
83	0413 : Cardiac differentiation of human pluripotent stem cells: the first step toward cardiac tissue engineering and cell therapy. Archives of Cardiovascular Diseases Supplements, 2015, 7, 198.	0.0	0
84	Alteration of skeletal and cardiac muscles function in <i>DBA/2J mdx</i> mice background: a focus on high intensity interval training. Intractable and Rare Diseases Research, 2021, 10, 269-275.	0.3	0
85	Modéliser la myopathie myofibrillaire pour élucider la pathogenèse cardiaque. Les Cahiers De Myologie, 2019, , 47-48.	0.0	0