Yi Shen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8102124/yi-shen-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67	2,791 citations	30	52
papers		h-index	g-index
70	3,307 ext. citations	8	5.83
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
67	Electro-oxidation of glycerol by tetrametallic platinum-gold p alladium-silver nanoparticles. <i>Journal of Applied Electrochemistry</i> , 2021 , 51, 79-86	2.6	4
66	Synthesis of magnetic Fe3O4@PS-ANTA-M2+ (M℡Ni, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins. <i>Chemical Engineering Journal</i> , 2021 , 404, 126427	14.7	5
65	Facile and moderate immobilization of proteases on SPS nanospheres for the active collagen peptides. <i>Food Chemistry</i> , 2021 , 335, 127610	8.5	2
64	Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. <i>Catalysis Science and Technology</i> , 2021 , 11, 4882-4888	5.5	1
63	Electro-Oxidation of Glycerol into Formic Acid by Nickel-Copper Electrocatalysts. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 084510	3.9	1
62	Effects of Metallic Impurities in Alkaline Electrolytes on Electro-Oxidation of Water and Alcohol Molecules. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 124516	3.9	0
61	Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction. <i>Journal of Catalysis</i> , 2020 , 388, 122-129	7.3	13
60	Boosting activity and selectivity of glycerol oxidation over platinumpalladium lilver electrocatalysts via surface engineering. <i>Nanoscale Advances</i> , 2020 , 2, 3423-3430	5.1	4
59	Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. <i>Carbon</i> , 2020 , 168, 588-596	10.4	6
58	Optimizing the activity and selectivity of glycerol oxidation over core-shell electrocatalysts. <i>Journal of Catalysis</i> , 2020 , 381, 130-138	7.3	10
57	Fabricating electrochemical aptasensors for detecting aflatoxin B1 via layer-by-layer self-assembly. Journal of Electroanalytical Chemistry, 2020 , 870, 114247	4.1	14
56	General synthesis of single atom electrocatalysts via a facile condensationDarbonization process. Journal of Materials Chemistry A, 2020 , 8, 25959-25969	13	5
55	An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. <i>Materials Horizons</i> , 2019 , 6, 595-603	14.4	178
54	Adsorption of Bovine Hemoglobin by Sulfonated Polystyrene Nanospheres. <i>ChemistrySelect</i> , 2019 , 4, 2874-2880	1.8	3
53	Synthesis of Positively Charged Polystyrene Microspheres for the Removal of Congo Red, Phosphate, and Chromium(VI). <i>ACS Omega</i> , 2019 , 4, 6669-6676	3.9	10
52	Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons. <i>ACS Applied Materials & ACS Applied & ACS Ap</i>	9.5	26
51	Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. <i>Advanced Materials</i> , 2019 , 31, e1806769	24	81

(2016-2019)

50	Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 604-612	21.8	49
49	Product Distribution of Glycerol Electro-oxidation over Platinum-Ceria/Graphene Nanosheet. <i>Electrochemistry</i> , 2019 , 87, 30-34	1.2	5
48	Efficient extraction of heavy metals from collagens by sulfonated polystyrene nanospheres. <i>Food Chemistry</i> , 2019 , 275, 377-384	8.5	16
47	Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes. <i>Electrochemistry Communications</i> , 2018 , 90, 106-110	5.1	27
46	Nickel©opper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. <i>Advanced Energy Materials</i> , 2018 , 8, 1701759	21.8	164
45	Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts. <i>ChemElectroChem</i> , 2018 , 5, 1624-1624	4.3	4
44	Holey-engineered electrodes for advanced vanadium flow batteries. <i>Nano Energy</i> , 2018 , 43, 55-62	17.1	81
43	Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts. <i>ChemElectroChem</i> , 2018 , 5, 1636-1643	4.3	36
42	Deactivation of bimetallic nickeldopper alloy catalysts in thermocatalytic decomposition of methane. <i>Catalysis Science and Technology</i> , 2018 , 8, 3853-3862	5.5	20
41	In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol. <i>ACS Applied Materials & District Americans</i> , 2017, 9, 3535-354	43 ^{9.5}	76
40	Electrochemical evaluation methods of vanadium flow battery electrodes. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 14708-14717	3.6	28
39	Carbon dots promoted vanadium flow batteries for all-climate energy storage. <i>Chemical Communications</i> , 2017 , 53, 7565-7568	5.8	34
38	CobaltBopper oxalate nanofibers mediated Fenton degradation of Congo red in aqueous solutions. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 52, 153-161	6.3	22
37	One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid. <i>Journal of Catalysis</i> , 2017 , 345, 70-77	7.3	11
36	Synthesis of 3D iron and carbon-based composite as a bifunctional sorbent and catalyst for remediation of organic pollutants. <i>Materials Research Express</i> , 2017 , 4, 075005	1.7	O
35	Gram-scale synthesis of monodisperse sulfonated polystyrene nanospheres for rapid and efficient sequestration of heavy metal ions. <i>Chemical Communications</i> , 2017 , 53, 12766-12769	5.8	20
34	A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. <i>Journal of Colloid and Interface Science</i> , 2016 , 462, 48-55	9.3	16
33	Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst. <i>Nano Energy</i> , 2016 , 28, 19-28	17.1	136

32	ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries. <i>ACS Applied Materials & Discourse Materi</i>	9.5	185
31	Ternary Platinum-Copper-Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3464-72	9.5	67
30	A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5817-5822	13	34
29	Synthesis of three-dimensional carbon felt supported TiO 2 monoliths for photocatalytic degradation of methyl orange. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 1259-1266	6.8	25
28	Scalable and Environmentally Friendly Synthesis of Hierarchical Magnetic Carbon Nanosheet Assemblies and Their Application in Water Treatment. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 6659-	6 3 88	24
27	Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2351-2358	8.3	43
26	Alcohol electro-oxidation on platinumBeria/graphene nanosheet in alkaline solutions. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 20709-20719	6.7	30
25	Coupling Mo2C Nanoparticles with Graphite Nanosheets as Durable Electrocatalysts for Hydrogen Evolution Reaction. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H1060-H1065	3.9	7
24	Evaluation of the effects of frozen storage on the microstructure of tilapia (Perciformes: Cichlidae) through fractal dimension method. <i>LWT - Food Science and Technology</i> , 2015 , 64, 1283-1288	5.4	17
23	Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. <i>RSC Advances</i> , 2015 , 5, 91846-91854	3.7	31
22	Polyol synthesis of nickellopper based catalysts for hydrogen production by methane decomposition. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 311-321	6.7	37
21	Synthesis of Ni and Ni L u supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 61-69	21.8	123
20	One-Pot Synthesis of Platinum deria/Graphene Nanosheet as Advanced Electrocatalysts for Alcohol Oxidation. <i>ChemElectroChem</i> , 2015 , 2, 887-895	4.3	37
19	Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. <i>Journal of Power Sources</i> , 2015 , 278, 235-244	8.9	60
18	Solgel synthesis of titanium oxide supported nickel catalysts for hydrogen and carbon production by methane decomposition. <i>Journal of Power Sources</i> , 2015 , 280, 467-475	8.9	36
17	Solgel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition. <i>RSC Advances</i> , 2014 , 4, 42159-42167	3.7	22
16	Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol. <i>ACS Applied Materials & District Research (Materials & District Research)</i> electro-oxidation of methanol.	9.5	64
15	Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21609-14	3.6	24

LIST OF PUBLICATIONS

1.	SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12423-12432	13	198
1	Synthesis of Pt, PtRh, and PtRhNi Alloys Supported by Pristine Graphene Nanosheets for Ethanol Electrooxidation. <i>ChemCatChem</i> , 2014 , 6, 3254-3261	5.2	42
1	Influence of inorganic fillers on the structural and transport properties of mixed matrix membranes. <i>Journal of Applied Polymer Science</i> , 2013 , 128, 4058-4066	2.9	17
1	Theoretical and experimental studies on the gas transport properties of mixed matrix membranes based on polyvinylidene fluoride. <i>AICHE Journal</i> , 2013 , 59, 4715-4726	3.6	24
10	Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. <i>Journal of Membrane Science</i> , 2013 , 429, 155-167	9.6	24
9	Preparation and characterization of polyimidelilica composite membranes and their derived carbonlilica composite membranes for gas separation. <i>Chemical Engineering Journal</i> , 2013 , 220, 441-451	14.7	56
8	A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. <i>Scientific Reports</i> , 2013 , 3, 3037	4.9	84
7	Preparation and characterization of mixed matrix membranes based on poly(vinylidene fluoride) and zeolite 4A for gas separation. <i>Polymer Engineering and Science</i> , 2012 , 52, 2106-2113	2.3	20
6	Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84) lilica nanocomposite membranes for gas separation. <i>Chemical Engineering Journal</i> , 2012 , 188, 199-209	14.7	54
5	Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. <i>Chemical Engineering Journal</i> , 2012 , 192, 201-210	14.7	101
4	Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide. <i>Journal of Applied Polymer Science</i> , 2010 , 116, NA-NA	2.9	3
3	A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. <i>Electrochimica Acta</i> , 2007 , 52, 6956-6961	6.7	32
2	Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. <i>Journal of Power Sources</i> , 2007 , 164, 555-560	8.9	109
1	PVDF-g-PSSA and Al2O3 composite proton exchange membranes. <i>Journal of Power Sources</i> , 2006 , 161, 54-60	8.9	53