## Yi Shen

## List of Publications by Citations

Source: https://exaly.com/author-pdf/8102124/yi-shen-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67
papers

2,791
citations

30
h-index

9-index

70
ext. papers

3,307
ext. citations

8
avg, IF

52
g-index

L-index

| #  | Paper                                                                                                                                                                                                                                                | IF                | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 67 | SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 12423-12432                                                      | 13                | 198       |
| 66 | ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries. <i>ACS Applied Materials &amp; Discourse (Materials &amp; Discourse)</i> 15369-78                                                                         | 9.5               | 185       |
| 65 | An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. <i>Materials Horizons</i> , <b>2019</b> , 6, 595-603                                                                                | 14.4              | 178       |
| 64 | NickelCopper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. <i>Advanced Energy Materials</i> , <b>2018</b> , 8, 1701759                                                                          | 21.8              | 164       |
| 63 | Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst. <i>Nano Energy</i> , <b>2016</b> , 28, 19-28                                                                                                        | 17.1              | 136       |
| 62 | Synthesis of Ni and Nitu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. <i>Applied Catalysis B: Environmental</i> , <b>2015</b> , 164, 61-69                                                | 21.8              | 123       |
| 61 | Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. <i>Journal of Power Sources</i> , <b>2007</b> , 164, 555-560                                                                                                                    | 8.9               | 109       |
| 60 | Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. <i>Chemical Engineering Journal</i> , <b>2012</b> , 192, 201-210 | 14.7              | 101       |
| 59 | A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. <i>Scientific Reports</i> , <b>2013</b> , 3, 3037                                                                                                | 4.9               | 84        |
| 58 | Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. <i>Advanced Materials</i> , <b>2019</b> , 31, e1806769                                                                                          | 24                | 81        |
| 57 | Holey-engineered electrodes for advanced vanadium flow batteries. <i>Nano Energy</i> , <b>2018</b> , 43, 55-62                                                                                                                                       | 17.1              | 81        |
| 56 | In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol. <i>ACS Applied Materials &amp; District Action Section</i> , 9, 3535-354                                      | .39.5             | 76        |
| 55 | Ternary Platinum-Copper-Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. <i>ACS Applied Materials &amp; Empty Interfaces</i> , <b>2016</b> , 8, 3464-72                                 | 9.5               | 67        |
| 54 | Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol. <i>ACS Applied Materials &amp; amp; Interfaces</i> , <b>2014</b> , 6, 15162-70                                                 | 9.5               | 64        |
| 53 | Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. <i>Journal of Power Sources</i> , <b>2015</b> , 278, 235-244                                                             | 8.9               | 60        |
| 52 | Preparation and characterization of polyimidelilica composite membranes and their derived carbon lilica composite membranes for gas separation. <i>Chemical Engineering Journal</i> , <b>2013</b> , 220, 441-45                                      | 1 <sup>14.7</sup> | 56        |
| 51 | Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84) lilica nanocomposite membranes for gas separation. <i>Chemical Engineering Journal</i> , <b>2012</b> , 188, 199-209                                                           | 14.7              | 54        |

## (2016-2006)

| 50 | PVDF-g-PSSA and Al2O3 composite proton exchange membranes. <i>Journal of Power Sources</i> , <b>2006</b> , 161, 54-60                                                                                                                  | 8.9            | 53 |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|--|
| 49 | Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. <i>Applied Catalysis B: Environmental</i> , <b>2019</b> , 245, 604-612                                                                  | 21.8           | 49 |  |
| 48 | Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2016</b> , 4, 2351-2358                   | 8.3            | 43 |  |
| 47 | Synthesis of Pt, PtRh, and PtRhNi Alloys Supported by Pristine Graphene Nanosheets for Ethanol Electrooxidation. <i>ChemCatChem</i> , <b>2014</b> , 6, 3254-3261                                                                       | 5.2            | 42 |  |
| 46 | Polyol synthesis of nickellopper based catalysts for hydrogen production by methane decomposition. <i>International Journal of Hydrogen Energy</i> , <b>2015</b> , 40, 311-321                                                         | 6.7            | 37 |  |
| 45 | One-Pot Synthesis of Platinumteria/Graphene Nanosheet as Advanced Electrocatalysts for Alcohol Oxidation. <i>ChemElectroChem</i> , <b>2015</b> , 2, 887-895                                                                            | 4.3            | 37 |  |
| 44 | Solgel synthesis of titanium oxide supported nickel catalysts for hydrogen and carbon production by methane decomposition. <i>Journal of Power Sources</i> , <b>2015</b> , 280, 467-475                                                | 8.9            | 36 |  |
| 43 | Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts. <i>ChemElectroChem</i> , <b>2018</b> , 5, 1636-1643                                                                | 4.3            | 36 |  |
| 42 | Carbon dots promoted vanadium flow batteries for all-climate energy storage. <i>Chemical Communications</i> , <b>2017</b> , 53, 7565-7568                                                                                              | 5.8            | 34 |  |
| 41 | A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. <i>Journal of Materials Chemistry A</i> , <b>2016</b> , 4, 5817-5822 | 13             | 34 |  |
| 40 | A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. <i>Electrochimica Acta</i> , <b>2007</b> , 52, 6956-6961                   | 6.7            | 32 |  |
| 39 | Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. <i>RSC Advances</i> , <b>2015</b> , 5, 91846-91854                                             | 3.7            | 31 |  |
| 38 | Alcohol electro-oxidation on platinumDeria/graphene nanosheet in alkaline solutions. <i>International Journal of Hydrogen Energy</i> , <b>2016</b> , 41, 20709-20719                                                                   | 6.7            | 30 |  |
| 37 | Electrochemical evaluation methods of vanadium flow battery electrodes. <i>Physical Chemistry Chemical Physics</i> , <b>2017</b> , 19, 14708-14717                                                                                     | 3.6            | 28 |  |
| 36 | Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes. <i>Electrochemistry Communications</i> , <b>2018</b> , 90, 106-110                                                                                                | 5.1            | 27 |  |
| 35 | Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons. <i>ACS Applied Materials &amp; ACS Applied Materials &amp; ACS Applied</i>                                                                              | 9.5            | 26 |  |
| 34 | Synthesis of three-dimensional carbon felt supported TiO 2 monoliths for photocatalytic degradation of methyl orange. <i>Journal of Environmental Chemical Engineering</i> , <b>2016</b> , 4, 1259-1266                                | 6.8            | 25 |  |
| 33 | Scalable and Environmentally Friendly Synthesis of Hierarchical Magnetic Carbon Nanosheet Assemblies and Their Application in Water Treatment. <i>Journal of Physical Chemistry C</i> , <b>2016</b> , 120, 6659-                       | -6 <u>8</u> 68 | 24 |  |

| 32 | Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets. <i>Physical Chemistry Chemical Physics</i> , <b>2014</b> , 16, 21609-14                                       | 3.6 | 24 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 31 | Theoretical and experimental studies on the gas transport properties of mixed matrix membranes based on polyvinylidene fluoride. <i>AICHE Journal</i> , <b>2013</b> , 59, 4715-4726                            | 3.6 | 24 |
| 30 | Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. <i>Journal of Membrane Science</i> , <b>2013</b> , 429, 155-167                                       | 9.6 | 24 |
| 29 | CobaltBopper oxalate nanofibers mediated Fenton degradation of Congo red in aqueous solutions. <i>Journal of Industrial and Engineering Chemistry</i> , <b>2017</b> , 52, 153-161                              | 6.3 | 22 |
| 28 | Solgel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition. <i>RSC Advances</i> , <b>2014</b> , 4, 42159-42167                                                         | 3.7 | 22 |
| 27 | Gram-scale synthesis of monodisperse sulfonated polystyrene nanospheres for rapid and efficient sequestration of heavy metal ions. <i>Chemical Communications</i> , <b>2017</b> , 53, 12766-12769              | 5.8 | 20 |
| 26 | Preparation and characterization of mixed matrix membranes based on poly(vinylidene fluoride) and zeolite 4A for gas separation. <i>Polymer Engineering and Science</i> , <b>2012</b> , 52, 2106-2113          | 2.3 | 20 |
| 25 | Deactivation of bimetallic nickeldopper alloy catalysts in thermocatalytic decomposition of methane. <i>Catalysis Science and Technology</i> , <b>2018</b> , 8, 3853-3862                                      | 5.5 | 20 |
| 24 | Evaluation of the effects of frozen storage on the microstructure of tilapia (Perciformes: Cichlidae) through fractal dimension method. <i>LWT - Food Science and Technology</i> , <b>2015</b> , 64, 1283-1288 | 5.4 | 17 |
| 23 | Influence of inorganic fillers on the structural and transport properties of mixed matrix membranes. <i>Journal of Applied Polymer Science</i> , <b>2013</b> , 128, 4058-4066                                  | 2.9 | 17 |
| 22 | A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. <i>Journal of Colloid and Interface Science</i> , <b>2016</b> , 462, 48-55                                 | 9.3 | 16 |
| 21 | Efficient extraction of heavy metals from collagens by sulfonated polystyrene nanospheres. <i>Food Chemistry</i> , <b>2019</b> , 275, 377-384                                                                  | 8.5 | 16 |
| 20 | Fabricating electrochemical aptasensors for detecting aflatoxin B1 via layer-by-layer self-assembly.<br>Journal of Electroanalytical Chemistry, <b>2020</b> , 870, 114247                                      | 4.1 | 14 |
| 19 | Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction. <i>Journal of Catalysis</i> , <b>2020</b> , 388, 122-129                                                    | 7-3 | 13 |
| 18 | One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid. <i>Journal of Catalysis</i> , <b>2017</b> , 345, 70-77                      | 7.3 | 11 |
| 17 | Synthesis of Positively Charged Polystyrene Microspheres for the Removal of Congo Red, Phosphate, and Chromium(VI). <i>ACS Omega</i> , <b>2019</b> , 4, 6669-6676                                              | 3.9 | 10 |
| 16 | Optimizing the activity and selectivity of glycerol oxidation over core-shell electrocatalysts. <i>Journal of Catalysis</i> , <b>2020</b> , 381, 130-138                                                       | 7.3 | 10 |
| 15 | Coupling Mo2C Nanoparticles with Graphite Nanosheets as Durable Electrocatalysts for Hydrogen Evolution Reaction. <i>Journal of the Electrochemical Society</i> , <b>2016</b> , 163, H1060-H1065               | 3.9 | 7  |

## LIST OF PUBLICATIONS

| 14 | Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. <i>Carbon</i> , <b>2020</b> , 168, 588-596      | 10.4 | 6 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 13 | General synthesis of single atom electrocatalysts via a facile condensationBarbonization process.<br>Journal of Materials Chemistry A, <b>2020</b> , 8, 25959-25969                             | 13   | 5 |
| 12 | Product Distribution of Glycerol Electro-oxidation over Platinum-Ceria/Graphene Nanosheet. <i>Electrochemistry</i> , <b>2019</b> , 87, 30-34                                                    | 1.2  | 5 |
| 11 | Synthesis of magnetic Fe3O4@PS-ANTA-M2+ (M⊞INi, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins. <i>Chemical Engineering Journal</i> , <b>2021</b> , 404, 126427 | 14.7 | 5 |
| 10 | Boosting activity and selectivity of glycerol oxidation over platinumpalladiumlilver electrocatalysts via surface engineering. <i>Nanoscale Advances</i> , <b>2020</b> , 2, 3423-3430           | 5.1  | 4 |
| 9  | Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts. <i>ChemElectroChem</i> , <b>2018</b> , 5, 1624-1624                         | 4.3  | 4 |
| 8  | Electro-oxidation of glycerol by tetrametallic platinum-goldpalladium-silver nanoparticles. <i>Journal of Applied Electrochemistry</i> , <b>2021</b> , 51, 79-86                                | 2.6  | 4 |
| 7  | Adsorption of Bovine Hemoglobin by Sulfonated Polystyrene Nanospheres. <i>ChemistrySelect</i> , <b>2019</b> , 4, 2874-2880                                                                      | 1.8  | 3 |
| 6  | Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide. <i>Journal of Applied Polymer Science</i> , <b>2010</b> , 116, NA-NA      | 2.9  | 3 |
| 5  | Facile and moderate immobilization of proteases on SPS nanospheres for the active collagen peptides. <i>Food Chemistry</i> , <b>2021</b> , 335, 127610                                          | 8.5  | 2 |
| 4  | Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. <i>Catalysis Science and Technology</i> , <b>2021</b> , 11, 4882-4888                                   | 5.5  | 1 |
| 3  | Electro-Oxidation of Glycerol into Formic Acid by Nickel-Copper Electrocatalysts. <i>Journal of the Electrochemical Society</i> , <b>2021</b> , 168, 084510                                     | 3.9  | 1 |
| 2  | Synthesis of 3D iron and carbon-based composite as a bifunctional sorbent and catalyst for remediation of organic pollutants. <i>Materials Research Express</i> , <b>2017</b> , 4, 075005       | 1.7  | О |
| 1  | Effects of Metallic Impurities in Alkaline Electrolytes on Electro-Oxidation of Water and Alcohol Molecules. <i>Journal of the Electrochemical Society</i> , <b>2021</b> , 168, 124516          | 3.9  | O |