Yi Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8102124/publications.pdf

Version: 2024-02-01

69	3,818	33 h-index	61
papers	citations		g-index
70	70	70	5044
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Materials Horizons, 2019, 6, 595-603.	12.2	297
2	SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. Journal of Materials Chemistry A, 2014, 2, 12423-12432.	10.3	244
3	ZrO ₂ -Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15369-15378.	8.0	234
4	Nickel–Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701759.	19.5	225
5	Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst. Nano Energy, 2016, 28, 19-28.	16.0	192
6	Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Applied Catalysis B: Environmental, 2015, 164, 61-69.	20.2	160
7	Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. Journal of Power Sources, 2007, 164, 555-560.	7.8	127
8	Holey-engineered electrodes for advanced vanadium flow batteries. Nano Energy, 2018, 43, 55-62.	16.0	127
9	Exceptional Performance of Hierarchical Ni–Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1806769.	21.0	124
10	Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chemical Engineering Journal, 2012, 192, 201-210.	12.7	113
11	A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Scientific Reports, 2013, 3, 3037.	3.3	106
12	Ternary Platinumâ€"Copperâ€"Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3464-3472.	8.0	93
13	In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol. ACS Applied Materials & Interfaces, 2017, 9, 3535-3543.	8.0	86
14	Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. Applied Catalysis B: Environmental, 2019, 245, 604-612.	20.2	82
15	Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chemical Engineering Journal, 2013, 220, 441-451.	12.7	71
16	Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. Journal of Power Sources, 2015, 278, 235-244.	7.8	71
17	Synthesis of Ultrafine Pt Nanoparticles Stabilized by Pristine Graphene Nanosheets for Electro-oxidation of Methanol. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15162-15170.	8.0	66
18	Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation. Chemical Engineering Journal, 2012, 188, 199-209.	12.7	64

#	Article	IF	CITATIONS
19	Sustainable Conversion of Glycerol into Valueâ€Added Chemicals by Selective Electroâ€Oxidation on Ptâ€Based Catalysts. ChemElectroChem, 2018, 5, 1636-1643.	3.4	62
20	PVDF-g-PSSA and Al2O3 composite proton exchange membranes. Journal of Power Sources, 2006, 161, 54-60.	7.8	59
21	Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. ACS Sustainable Chemistry and Engineering, 2016, 4, 2351-2358.	6.7	57
22	Synthesis of Pt, PtRh, and PtRhNi Alloys Supported by Pristine Graphene Nanosheets for Ethanol Electrooxidation. ChemCatChem, 2014, 6, 3254-3261.	3.7	49
23	Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28953-28959.	8.0	49
24	Alcohol electro-oxidation on platinum–ceria/graphene nanosheet in alkaline solutions. International Journal of Hydrogen Energy, 2016, 41, 20709-20719.	7.1	46
25	Carbon dots promoted vanadium flow batteries for all-climate energy storage. Chemical Communications, 2017, 53, 7565-7568.	4.1	46
26	Sol–gel synthesis of titanium oxide supported nickel catalysts for hydrogen and carbon production by methane decomposition. Journal of Power Sources, 2015, 280, 467-475.	7.8	45
27	Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 2015, 5, 91846-91854.	3.6	43
28	Polyol synthesis of nickel–copper based catalysts for hydrogen production by methane decomposition. International Journal of Hydrogen Energy, 2015, 40, 311-321.	7.1	43
29	Electrochemical evaluation methods of vanadium flow battery electrodes. Physical Chemistry Chemical Physics, 2017, 19, 14708-14717.	2.8	43
30	A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. Electrochimica Acta, 2007, 52, 6956-6961.	5.2	41
31	A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. Journal of Materials Chemistry A, 2016, 4, 5817-5822.	10.3	39
32	Oneâ€Pot Synthesis of Platinum–Ceria/Graphene Nanosheet as Advanced Electrocatalysts for Alcohol Oxidation. ChemElectroChem, 2015, 2, 887-895.	3.4	38
33	Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes. Electrochemistry Communications, 2018, 90, 106-110.	4.7	38
34	Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction. Journal of Catalysis, 2020, 388, 122-129.	6.2	32
35	Evaluation of the effects of frozen storage on the microstructure of tilapia (Perciformes: Cichlidae) through fractal dimension method. LWT - Food Science and Technology, 2015, 64, 1283-1288.	5. 2	31
36	Fabricating electrochemical aptasensors for detecting aflatoxin B1 via layer-by-layer self-assembly. Journal of Electroanalytical Chemistry, 2020, 870, 114247.	3.8	31

#	Article	IF	CITATIONS
37	Theoretical and experimental studies on the gas transport properties of mixed matrix membranes based on polyvinylidene fluoride. AICHE Journal, 2013, 59, 4715-4726.	3.6	30
38	Cobalt–copper oxalate nanofibers mediated Fenton degradation of Congo red in aqueous solutions. Journal of Industrial and Engineering Chemistry, 2017, 52, 153-161.	5.8	30
39	Deactivation of bimetallic nickel–copper alloy catalysts in thermocatalytic decomposition of methane. Catalysis Science and Technology, 2018, 8, 3853-3862.	4.1	30
40	Synthesis of three-dimensional carbon felt supported TiO 2 monoliths for photocatalytic degradation of methyl orange. Journal of Environmental Chemical Engineering, 2016, 4, 1259-1266.	6.7	29
41	Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. Journal of Membrane Science, 2013, 429, 155-167.	8.2	28
42	Sol–gel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition. RSC Advances, 2014, 4, 42159-42167.	3.6	27
43	Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 21609-21614.	2.8	27
44	Gram-scale synthesis of monodisperse sulfonated polystyrene nanospheres for rapid and efficient sequestration of heavy metal ions. Chemical Communications, 2017, 53, 12766-12769.	4.1	26
45	Scalable and Environmentally Friendly Synthesis of Hierarchical Magnetic Carbon Nanosheet Assemblies and Their Application in Water Treatment. Journal of Physical Chemistry C, 2016, 120, 6659-6668.	3.1	25
46	A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. Journal of Colloid and Interface Science, 2016, 462, 48-55.	9.4	24
47	Optimizing the activity and selectivity of glycerol oxidation over core-shell electrocatalysts. Journal of Catalysis, 2020, 381, 130-138.	6.2	23
48	Efficient extraction of heavy metals from collagens by sulfonated polystyrene nanospheres. Food Chemistry, 2019, 275, 377-384.	8.2	22
49	Preparation and characterization of mixed matrix membranes based on poly(vinylidene fluoride) and zeolite 4A for gas separation. Polymer Engineering and Science, 2012, 52, 2106-2113.	3.1	21
50	Influence of inorganic fillers on the structural and transport properties of mixed matrix membranes. Journal of Applied Polymer Science, 2013, 128, 4058-4066.	2.6	21
51	Synthesis of Positively Charged Polystyrene Microspheres for the Removal of Congo Red, Phosphate, and Chromium(VI). ACS Omega, 2019, 4, 6669-6676.	3.5	19
52	Synthesis of magnetic Fe3O4@PS-ANTA-M2+ (MÂ=ÂNi, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins. Chemical Engineering Journal, 2021, 404, 126427.	12.7	17
53	General synthesis of single atom electrocatalysts <i>via</i> a facile condensation–carbonization process. Journal of Materials Chemistry A, 2020, 8, 25959-25969.	10.3	14
54	Boosting activity and selectivity of glycerol oxidation over platinum–palladium–silver electrocatalysts ⟨i⟩via⟨/i⟩ surface engineering. Nanoscale Advances, 2020, 2, 3423-3430.	4.6	14

#	Article	IF	CITATIONS
55	One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid. Journal of Catalysis, 2017, 345, 70-77.	6.2	13
56	Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon, 2020, 168, 588-596.	10.3	12
57	Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide. Journal of Applied Polymer Science, 2010, 116, 2906-2912.	2.6	11
58	Electro-Oxidation of Glycerol into Formic Acid by Nickel-Copper Electrocatalysts. Journal of the Electrochemical Society, 2021, 168, 084510.	2.9	11
59	Product Distribution of Glycerol Electro-oxidation over Platinum-Ceria/Graphene Nanosheet. Electrochemistry, 2019, 87, 30-34.	1.4	10
60	Electro-oxidation of glycerol by tetrametallic platinum-gold–palladium-silver nanoparticles. Journal of Applied Electrochemistry, 2021, 51, 79-86.	2.9	9
61	Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. Catalysis Science and Technology, 2021, 11, 4882-4888.	4.1	9
62	Coupling Mo ₂ C Nanoparticles with Graphite Nanosheets as Durable Electrocatalysts for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H1060-H1065.	2.9	8
63	Facile and moderate immobilization of proteases on SPS nanospheres for the active collagen peptides. Food Chemistry, 2021, 335, 127610.	8.2	7
64	Adsorption of Bovine Hemoglobin by Sulfonated Polystyrene Nanospheres. ChemistrySelect, 2019, 4, 2874-2880.	1.5	6
65	Electrodeposition synthesis of free-standing metal/carbon felts electrodes for electrocatalytic hydrogenation of levulinic acid. International Journal of Hydrogen Energy, 2022, 47, 22763-22774.	7.1	6
66	Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts. ChemElectroChem, 2018, 5, 1624-1624.	3.4	4
67	Effects of Metallic Impurities in Alkaline Electrolytes on Electro-Oxidation of Water and Alcohol Molecules. Journal of the Electrochemical Society, 2021, 168, 124516.	2.9	4
68	Synthesis of 3D iron and carbon-based composite as a bifunctional sorbent and catalyst for remediation of organic pollutants. Materials Research Express, 2017, 4, 075005.	1.6	1
69	Preparation of Iron-Copper Oxalates and Oxides for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 064503.	2.9	1