Stuart L Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8101657/publications.pdf

Version: 2024-02-01

281 papers

58,767 citations

97 h-index 232 g-index

341 all docs

341 does citations

times ranked

341

57924 citing authors

#	Article	IF	CITATIONS
1	Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 2014, 156, 317-331.	13.5	4,187
2	Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 1991, 66, 807-815.	13.5	3,938
3	The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452, 230-233.	13.7	2,423
4	Printing Proteins as Microarrays for High-Throughput Function Determination. Science, 2000, 289, 1760-1763.	6.0	2,413
5	A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell, 2017, 171, 1437-1452.e17.	13.5	2,281
6	The mechanism of action of cyclosporin A and FK506. Trends in Immunology, 1992, 13, 136-142.	7.5	2,114
7	A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature, 1994, 369, 756-758.	13.7	1,829
8	Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen. Science, 1999, 286, 971-974.	6.0	1,638
9	Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science, 2014, 343, 301-305.	6.0	1,371
10	A Planning Strategy for Diversity-Oriented Synthesis. Angewandte Chemie - International Edition, 2004, 43, 46-58.	7.2	1,370
11	A receptor for the immuno-suppressant FK506 is a cis–trans peptidyl-prolyl isomerase. Nature, 1989, 341, 758-760.	13.7	1,341
12	Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547, 453-457.	13.7	1,194
13	Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551, 247-250.	13.7	1,043
14	Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4389-4394.	3.3	980
15	Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475, 231-234.	13.7	939
16	Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature, 1995, 377, 441-446.	13.7	665
17	Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nature Chemical Biology, 2016, 12, 109-116.	3.9	636
18	Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 1998, 395, 917-921.	13.7	620

#	Article	lF	CITATIONS
19	An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules. Cell, 2013, 154, 1151-1161.	13.5	615
20	Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discovery, 2015, 5, 1210-1223.	7.7	575
21	Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chemical Biology, 2007, 3, 331-338.	3.9	572
22	Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8567-8572.	3.3	571
23	Deacetylase Enzymes. Chemistry and Biology, 2002, 9, 3-16.	6.2	513
24	Towards the Optimal Screening Collection: A Synthesis Strategy. Angewandte Chemie - International Edition, 2008, 47, 48-56.	7.2	507
25	A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nature Communications, 2019, 10, 1617.	5.8	499
26	Printing Small Molecules as Microarrays and Detecting Proteinâ ^{^2} Ligand Interactions en Masse. Journal of the American Chemical Society, 1999, 121, 7967-7968.	6.6	445
27	Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorganic and Medicinal Chemistry, 1998, 6, 1127-1152.	1.4	420
28	Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature, 2020, 585, 603-608.	13.7	420
29	Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nature Chemical Biology, 2020, 16, 302-309.	3.9	396
30	Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature, 2002, 416, 653-657.	13.7	383
31	Generating Diverse Skeletons of Small Molecules Combinatorially. Science, 2003, 302, 613-618.	6.0	371
32	Signaling Network Model of Chromatin. Cell, 2002, 111, 771-778.	13.5	353
33	Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. Cell, 2016, 167, 171-186.e15.	13.5	353
34	The landscape of cancer cell line metabolism. Nature Medicine, 2019, 25, 850-860.	15.2	350
35	Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell, 1992, 70, 365-368.	13.5	346
36	Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5992-5997.	3.3	332

#	Article	IF	CITATIONS
37	Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature, 1990, 346, 671-674.	13.7	330
38	N-oxide promoted pauson-khand cyclizations at room temperature. Tetrahedron Letters, 1990, 31, 5289-5292.	0.7	327
39	DIMERIZATION AS A REGULATORY MECHANISM IN SIGNAL TRANSDUCTION. Annual Review of Immunology, 1998, 16, 569-592.	9.5	308
40	Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18787-18792.	3.3	302
41	Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7741-7746.	3.3	298
42	Small molecules: the missing link in the central dogma. Nature Chemical Biology, 2005, 1, 64-66.	3.9	294
43	Molecular diversity by design. Nature, 2009, 457, 153-154.	13.7	273
44	A small molecule that binds Hedgehog and blocks its signaling in human cells. Nature Chemical Biology, 2009, 5, 154-156.	3.9	273
45	Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature, 1996, 382, 822-826.	13.7	264
46	From Knowing to Controlling: A Path from Genomics to Drugs Using Small Molecule Probes. Science, 2003, 300, 294-295.	6.0	263
47	Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature, 1997, 385, 93-97.	13.7	261
48	A Library of Spirooxindoles Based on a Stereoselective Three-Component Coupling Reaction. Journal of the American Chemical Society, 2004, 126, 16077-16086.	6.6	258
49	The Rise of Molecular Glues. Cell, 2021, 184, 3-9.	13.5	252
50	Pairwise Use of Complexity-Generating Reactions in Diversity-Oriented Organic Synthesis. Organic Letters, 2000, 2, 709-712.	2.4	247
51	High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nature Biotechnology, 2016, 34, 419-423.	9.4	245
52	Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chemistry and Biology, 2000, 7, 275-286.	6.2	235
53	Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nature Chemical Biology, 2020, 16, 497-506.	3.9	229
54	Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16594-16599.	3.3	225

#	Article	IF	Citations
55	Multiplex Cytological Profiling Assay to Measure Diverse Cellular States. PLoS ONE, 2013, 8, e80999.	1.1	224
56	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.	13.7	214
57	Small-Molecule Microarrays:Â Covalent Attachment and Screening of Alcohol-Containing Small Molecules on Glass Slides. Journal of the American Chemical Society, 2000, 122, 7849-7850.	6.6	205
58	Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15115-15120.	3.3	200
59	An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell, 2020, 182, 1009-1026.e29.	13.5	194
60	High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chemistry and Biology, 1999, 6, 71-83.	6.2	191
61	Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10911-10916.	3.3	191
62	Integration of Growth Factor and Nutrient Signaling. Molecular Cell, 2003, 12, 271-280.	4.5	186
63	Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides. Biomolecules, 2020, 10, 1.	1.8	186
64	Synthesis and Cellular Profiling of Diverse Organosilicon Small Molecules. Journal of the American Chemical Society, 2007, 129, 1020-1021.	6.6	185
65	On the Conformation and Structure of Organometal Complexes in the Solid State: Two Studies Relevant to Chemical Synthesis. Angewandte Chemie International Edition in English, 1990, 29, 256-272.	4.4	184
66	Discovery of an Inhibitor of a Transcription Factor Using Small Molecule Microarrays and Diversity-Oriented Synthesis. Journal of the American Chemical Society, 2003, 125, 8420-8421.	6.6	184
67	Chemical probes and drug leads from advances in synthetic planning and methodology. Nature Reviews Drug Discovery, 2018, 17, 333-352.	21.5	182
68	Binding Affinity and Kinetic Analysis of Targeted Small Molecule-Modified Nanoparticles. Bioconjugate Chemistry, 2010, 21, 14-19.	1.8	179
69	A Synthesis Strategy Yielding Skeletally Diverse Small Molecules Combinatorially. Journal of the American Chemical Society, 2004, 126, 14095-14104.	6.6	178
70	Fragmentation reactions of .alphaalkoxy hydroperoxides and application to the synthesis of the macrolide (.+)-recifeiolide. Journal of the American Chemical Society, 1980, 102, 6163-6165.	6.6	173
71	A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nature Genetics, 2018, 50, 979-989.	9.4	168
72	Short Synthesis of Skeletally and Stereochemically Diverse Small Molecules by Coupling Petasis Condensation Reactions to Cyclization Reactions. Angewandte Chemie - International Edition, 2006, 45, 3635-3638.	7.2	159

#	Article	IF	CITATIONS
73	Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1822-1826.	1.0	157
74	Three-part inventions: intracellular signaling and induced proximity. Trends in Biochemical Sciences, 1996, 21, 418-422.	3.7	150
75	Natural Products as Probes of Cellular Function: Studies of Immunophilins. Angewandte Chemie International Edition in English, 1992, 31, 384-400.	4.4	149
76	Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nature Structural Biology, 1999, 6, 953-960.	9.7	140
77	Synthesis of 7200 Small Molecules Based on a Substructural Analysis of the Histone Deacetylase Inhibitors Trichostatin and Trapoxin. Organic Letters, 2001, 3, 4239-4242.	2.4	140
78	High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host and Microbe, 2016, 19, 114-126.	5.1	140
79	Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nature Communications, 2019, 10, 4346.	5.8	139
80	A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nature Communications, 2016, 7, 11428.	5.8	136
81	Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. Cell, 2015, 161, 1252-1265.	13.5	135
82	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	13.5	135
82	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155. Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6699-6702.	3.3	135
	Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of		
83	Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6699-6702. Relationship of Stereochemical and Skeletal Diversity of Small Molecules to Cellular Measurement	3.3	133
83	Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6699-6702. Relationship of Stereochemical and Skeletal Diversity of Small Molecules to Cellular Measurement Space. Journal of the American Chemical Society, 2004, 126, 14740-14745. Complex αâ€Pyrones Synthesized by a Gold atalyzed Coupling Reaction. Angewandte Chemie -	3.3 6.6	133
83 84 85	Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6699-6702. Relationship of Stereochemical and Skeletal Diversity of Small Molecules to Cellular Measurement Space. Journal of the American Chemical Society, 2004, 126, 14740-14745. Complex αâ€Pyrones Synthesized by a Goldâ€Catalyzed Coupling Reaction. Angewandte Chemie International Edition, 2007, 46, 8250-8253. Skeletal Diversity via a Branched Pathway:Â Efficient Synthesis of 29Â400 Discrete, Polycyclic Compounds and Their Arraying into Stock Solutions. Journal of the American Chemical Society, 2002,	3.3 6.6 7.2	133 129 126
83 84 85 86	Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6699-6702. Relationship of Stereochemical and Skeletal Diversity of Small Molecules to Cellular Measurement Space. Journal of the American Chemical Society, 2004, 126, 14740-14745. Complex αâ€Pyrones Synthesized by a Goldâ€Catalyzed Coupling Reaction. Angewandte Chemie International Edition, 2007, 46, 8250-8253. Skeletal Diversity via a Branched Pathway:Â Efficient Synthesis of 29Â400 Discrete, Polycyclic Compounds and Their Arraying into Stock Solutions. Journal of the American Chemical Society, 2002, 124, 13402-13404. A Robust Small-Molecule Microarray Platform for Screening Cell Lysates. Chemistry and Biology,	3.3 6.6 7.2 6.6	133 129 126 124
83 84 85 86	Organic synthesis toward small-molecule probes and drugs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6699-6702. Relationship of Stereochemical and Skeletal Diversity of Small Molecules to Cellular Measurement Space. Journal of the American Chemical Society, 2004, 126, 14740-14745. Complex î±â€Pyrones Synthesized by a Goldâ€Catalyzed Coupling Reaction. Angewandte Chemie - International Edition, 2007, 46, 8250-8253. Skeletal Diversity via a Branched Pathway:Â Efficient Synthesis of 29Â400 Discrete, Polycyclic Compounds and Their Arraying into Stock Solutions. Journal of the American Chemical Society, 2002, 124, 13402-13404. A Robust Small-Molecule Microarray Platform for Screening Cell Lysates. Chemistry and Biology, 2006, 13, 493-504. Unifying principles of bifunctional, proximity-inducing small molecules. Nature Chemical Biology,	3.3 6.6 7.2 6.6	133 129 126 124

#	Article	IF	Citations
91	Skeletal Diversity via a Folding Pathway:  Synthesis of Indole Alkaloid-Like Skeletons. Organic Letters, 2005, 7, 47-50.	2.4	116
92	Structural Biasing Elements for In-Cell Histone Deacetylase Paralog Selectivity. Journal of the American Chemical Society, 2003, 125, 5586-5587.	6.6	115
93	Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464.	13.7	115
94	Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13162-13167.	3.3	112
95	An Alkylsilyl-Tethered, High-Capacity Solid Support Amenable to Diversity-Oriented Synthesis for One-Bead, One-Stock Solution Chemical Genetics. ACS Combinatorial Science, 2001, 3, 312-318.	3.3	110
96	A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering. Cell, 2019, 179, 1222-1238.e17.	13.5	109
97	Integrative Radiogenomic Profiling of Squamous Cell Lung Cancer. Cancer Research, 2013, 73, 6289-6298.	0.4	108
98	Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nature Genetics, 2007, 39, 496-502.	9.4	107
99	Synthesis and Conformationâ [^] Activity Relationships of the Peptide Isosteres of FK228 and Largazole. Journal of the American Chemical Society, 2009, 131, 2900-2905.	6.6	107
100	Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp ³)â€"H Arylation. Journal of the American Chemical Society, 2017, 139, 11300-11306.	6.6	104
101	Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical Biology, 2013, 9, 840-848.	3.9	103
102	A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. GigaScience, 2017, 6, 1-5.	3.3	102
103	A one-bead, one-stock solution approach to chemical genetics: part 2. Chemistry and Biology, 2001, 8, 1183-1195.	6.2	101
104	A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nature Chemical Biology, 2017, 13, 943-950.	3.9	100
105	Expanding the Functional Group Compatibility of Small-Molecule Microarrays: Discovery of Novel Calmodulin Ligands. Angewandte Chemie - International Edition, 2003, 42, 2376-2379.	7.2	98
106	Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nature Chemical Biology, 2006, 2, 103-109.	3.9	98
107	Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6817-6822.	3.3	98
108	The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chemical Biology, 2016, 23, 3-9.	2.5	97

#	Article	lF	CITATIONS
109	Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Molecular Cell, 2022, 82, 728-740.	4.5	92
110	Gold(I)-Catalyzed Coupling Reactions for the Synthesis of Diverse Small Molecules Using the Build/Couple/Pair Strategy. Journal of the American Chemical Society, 2009, 131, 5667-5674.	6.6	91
111	SnapShot: Ca2+-Calcineurin-NFATSignaling. Cell, 2009, 138, 210-210.e1.	13.5	90
112	Phosphorylation-Inducing Chimeric Small Molecules. Journal of the American Chemical Society, 2020, 142, 14052-14057.	6.6	90
113	Rational Design of Orthogonal Receptor–Ligand Combinations. Angewandte Chemie International Edition in English, 1995, 34, 2129-2132.	4.4	89
114	Syntheses of α-Pyrones Using Gold-Catalyzed Coupling Reactions. Organic Letters, 2011, 13, 2834-2836.	2.4	89
115	The identification of myriocin-binding proteins. Chemistry and Biology, 1999, 6, 221-235.	6.2	88
116	Molecular Association between ATR and Two Components of the Nucleosome Remodeling and Deacetylating Complex, HDAC2 and CHD4. Biochemistry, 1999, 38, 14711-14717.	1.2	88
117	Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology, 2013, 64, 81-96.	2.0	87
118	Fluorousâ€Based Smallâ€Molecule Microarrays for the Discovery of Histone Deacetylase Inhibitors. Angewandte Chemie - International Edition, 2007, 46, 7960-7964.	7.2	84
119	High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infectious Diseases, 2016, 2, 281-293.	1.8	84
120	Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. Journal of the American Chemical Society, 1997, 119, 5106-5109.	6.6	82
121	A Boronic Ester Annulation Strategy for Diversity-Oriented Organic Synthesis. Angewandte Chemie - International Edition, 2002, 41, 152-154.	7.2	82
122	Discovery of histone deacetylase 8 selective inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2601-2605.	1.0	82
123	The effect of the immunosuppressant FK-506 on alternate pathways of T cell activation. European Journal of Immunology, 1991, 21, 439-445.	1.6	80
124	Proximity versus allostery: the role of regulated protein dimerization in biology. Chemistry and Biology, 1994, 1, 131-136.	6.2	80
125	Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight, 2019, 4, .	2.3	80
126	Distinct Biological Network Properties between the Targets of Natural Products and Disease Genes. Journal of the American Chemical Society, 2010, 132, 9259-9261.	6.6	79

#	Article	IF	CITATIONS
127	DNA Barcoding a Complete Matrix of Stereoisomeric Small Molecules. Journal of the American Chemical Society, 2019, 141, 10225-10235.	6.6	79
128	Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 4320 Encoded and Spatially Segregated Dihydropyrancarboxamides. Angewandte Chemie - International Edition, 2001, 40, 3417-3421.	7.2	78
129	An Oligomer-Based Approach to Skeletal Diversity in Small-Molecule Synthesis. Journal of the American Chemical Society, 2006, 128, 14766-14767.	6.6	76
130	Diacylfuroxans Are Masked Nitrile Oxides That Inhibit GPX4 Covalently. Journal of the American Chemical Society, 2019, 141, 20407-20415.	6.6	76
131	Synthetic Strategy toward Skeletal Diversity via Solid-Supported, Otherwise Unstable Reactive Intermediates. Angewandte Chemie - International Edition, 2004, 43, 1681-1685.	7.2	75
132	Identification and Characterization of Small Molecule Inhibitors of a Class I Histone Deacetylase from <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2009, 52, 2185-2187.	2.9	75
133	Convergent Diversity-Oriented Synthesis of Small-Molecule Hybrids. Angewandte Chemie - International Edition, 2005, 44, 2249-2252.	7.2	74
134	Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nature Chemical Biology, 2016, 12, 102-108.	3.9	72
135	Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit. Cell Chemical Biology, 2020, 27, 463-471.	2.5	72
136	Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6319-6325.	1.0	71
137	Small Molecules, Big Players: the National Cancer Institute's Initiative for Chemical Genetics. Cancer Research, 2006, 66, 8935-8942.	0.4	69
138	Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Research, 2020, 48, 10615-10631.	6.5	69
139	Small-molecule screening identifies inhibition of salt-inducible kinases as a therapeutic strategy to enhance immunoregulatory functions of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12468-12473.	3.3	68
140	Targeting Dependency on the GPX4 Lipid Peroxide Repair Pathway for Cancer Therapy. Biochemistry, 2018, 57, 2059-2060.	1.2	68
141	Recent achievements and current trajectories of diversity-oriented synthesis. Current Opinion in Chemical Biology, 2020, 56, 1-9.	2.8	67
142	An Alkynylboronic Ester Annulation: Development of Synthetic Methods for Application to Diversity-Oriented Organic Synthesis. Angewandte Chemie - International Edition, 2002, 41, 3272-3276.	7.2	66
143	Catalytic Diastereoselective Petasis Reactions. Angewandte Chemie - International Edition, 2011, 50, 8172-8175.	7.2	66
144	Towards patient-based cancer therapeutics. Nature Biotechnology, 2010, 28, 904-906.	9.4	65

#	Article	IF	CITATIONS
145	Small-molecule inducers of insulin expression in pancreatic \hat{l} ±-cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15099-15104.	3.3	62
146	Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chemistry and Biology, 1994, 1, 163-172.	6.2	61
147	Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature, 1995, 376, 788-791.	13.7	60
148	NAMPT Is the Cellular Target of STF-31-Like Small-Molecule Probes. ACS Chemical Biology, 2014, 9, 2247-2254.	1.6	60
149	Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurology, The, 2020, 19, 361-368.	4.9	60
150	Small-Molecule Diversity Using a Skeletal Transformation Strategy. Organic Letters, 2005, 7, 2535-2538.	2.4	58
151	DNA-Compatible [3 + 2] Nitrone–Olefin Cycloaddition Suitable for DEL Syntheses. Organic Letters, 2019, 21, 1325-1330.	2.4	58
152	Water-Compatible Cycloadditions of Oligonucleotide-Conjugated Strained Allenes for DNA-Encoded Library Synthesis. Journal of the American Chemical Society, 2020, 142, 7776-7782.	6.6	58
153	Chemical Genomic Profiling of Biological Networks Using Graph Theory and Combinations of Small Molecule Perturbations. Journal of the American Chemical Society, 2003, 125, 10543-10545.	6.6	57
154	Discovery of Small-Molecule Enhancers of Reactive Oxygen Species That are Nontoxic or Cause Genotype-Selective Cell Death. ACS Chemical Biology, 2013, 8, 923-929.	1.6	57
155	Linking Tumor Mutations to Drug Responses via a Quantitative Chemical–Genetic Interaction Map. Cancer Discovery, 2015, 5, 154-167.	7.7	57
156	Development of Chemical Probes for Investigation of Salt-Inducible Kinase Function $\langle i \rangle$ in Vivo $\langle i \rangle$. ACS Chemical Biology, 2016, 11, 2105-2111.	1.6	57
157	A Chemical Biology View of Bioactive Small Molecules and a Binderâ€Based Approach to Connect Biology to Precision Medicines. Israel Journal of Chemistry, 2019, 59, 52-59.	1.0	57
158	Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4281-7.	3.3	56
159	Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. Acta Crystallographica Section D: Structural Biology, 2021, 77, 237-248.	1.1	56
160	DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with <i>In Silico</i> Analysis to Identify Novel Therapeutic Targets. Clinical Cancer Research, 2016, 22, 3903-3914.	3.2	54
161	Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2012, 3, 112-117.	1.3	52
162	Development of ML390: A Human DHODH Inhibitor That Induces Differentiation in Acute Myeloid Leukemia. ACS Medicinal Chemistry Letters, 2016, 7, 1112-1117.	1.3	51

#	Article	IF	Citations
163	Stereochemical and Skeletal Diversity Arising from Amino Propargylic Alcohols. Organic Letters, 2010, 12, 2822-2825.	2.4	50
164	1 H and 15 N assignments and secondary structure of the Src SH3 domain. FEBS Letters, 1993, 324, 87-92.	1.3	49
165	Skeletally Diverse Small Molecules Using a Build/Couple/Pair Strategy. Organic Letters, 2009, 11, 1559-1562.	2.4	49
166	Discovery of Antimalarial Azetidine-2-carbonitriles That Inhibit <i>P. falciparum</i> Dihydroorotate Dehydrogenase. ACS Medicinal Chemistry Letters, 2017, 8, 438-442.	1.3	49
167	Synergistic Effects of Stereochemistry and Appendages on the Performance Diversity of a Collection of Synthetic Compounds. Journal of the American Chemical Society, 2018, 140, 11784-11790.	6.6	47
168	Exploiting Siteâ^Site Interactions on Solid Support to Generate Dimeric Molecules. Organic Letters, 2001, 3, 1185-1188.	2.4	46
169	Diversity Synthesis of Complex Pyridines Yields a Probe of a Neurotrophic Signaling Pathway. Organic Letters, 2008, 10, 2621-2624.	2.4	46
170	Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nature Chemical Biology, 2017, 13, 1102-1108.	3.9	46
171	Integrated genetic and pharmacologic interrogation of rare cancers. Nature Communications, 2016, 7, 11987.	5.8	45
172	Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11392-11397.	3.3	45
173	Bicyclic azetidines kill the diarrheal pathogen <i>Cryptosporidium</i> in mice by inhibiting parasite phenylalanyl-tRNA synthetase. Science Translational Medicine, 2020, 12, .	5.8	45
174	Ligandâ€Enabled βâ€Methylene C(sp ³)â^'H Arylation of Masked Aliphatic Alcohols. Angewandte Chemie - International Edition, 2020, 59, 7783-7787.	7.2	45
175	Combinatorial Synthesis and Multidimensional NMR Spectroscopy: An Approach to Understanding Protein–Ligand Interactions. Angewandte Chemie International Edition in English, 1995, 34, 953-969.	4.4	42
176	Exploring the Specificity Pockets of Two Homologous SH3 Domains Using Structure-Based, Split-Pool Synthesis and Affinity-Based Selection. Journal of the American Chemical Society, 1998, 120, 23-29.	6.6	42
177	Macrocycloadditions Leading to Conformationally Restricted Small Molecules. Organic Letters, 2006, 8, 2063-2066.	2.4	42
178	The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells. Cancer Biology and Therapy, 2011, 12, 484-493.	1.5	42
179	Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7793-7798.	3.3	41
180	Naturstoffe als Sonden zum Studium zelluläer Funktionen – Untersuchungen von Immunophilinen. Angewandte Chemie, 1992, 104, 413-430.	1.6	40

#	Article	IF	Citations
181	Visualizing Functional Group Distribution in Solid-Support Beads by Using Optical Analysis. Chemistry - A European Journal, 1999, 5, 3528-3532.	1.7	40
182	Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity and Mode of Action Studies. ACS Medicinal Chemistry Letters, 2012, 3, 808-813.	1.3	39
183	Real-Time Biological Annotation of Synthetic Compounds. Journal of the American Chemical Society, 2016, 138, 8920-8927.	6.6	39
184	Modular, stereocontrolled C $\langle \text{sub} \rangle \hat{l}^2 \langle \text{sub} \rangle \hat{a} \in \text{H/C} \langle \text{sub} \rangle \hat{l} \pm \langle \text{sub} \rangle \hat{a} \in \text{C}$ activation of alkyl carboxylic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8721-8727.	3.3	39
185	Revealing Complex Traits with Small Molecules and Naturally Recombinant Yeast Strains. Chemistry and Biology, 2006, 13, 319-327.	6.2	38
186	Small-Molecule Suppressors of Cytokine-Induced \hat{l}^2 -Cell Apoptosis. ACS Chemical Biology, 2010, 5, 729-734.	1.6	38
187	Stereospecific Palladium-Catalyzed C–H Arylation of Pyroglutamic Acid Derivatives at the C3 Position Enabled by 8-Aminoquinoline as a Directing Group. Organic Letters, 2017, 19, 4424-4427.	2.4	38
188	Cell-Specific Calcineurin Inhibition by a Modified Cyclosporin. Journal of the American Chemical Society, 1997, 119, 1805-1806.	6.6	37
189	Identification of a Small-Molecule Inhibitor of Class Ia PI3Ks with Cell-Based Screening. Chemistry and Biology, 2007, 14, 371-377.	6.2	37
190	<i>KRAS</i> Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine. Cancer Research, 2015, 75, 2897-2906.	0.4	37
191	Discovery of a Small-Molecule Probe for V-ATPase Function. Journal of the American Chemical Society, 2015, 137, 5563-5568.	6.6	36
192	Diversity-Oriented Synthesis Yields a New Drug Lead for Treatment of Chagas Disease. ACS Medicinal Chemistry Letters, 2014, 5, 149-153.	1.3	35
193	Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. ELife, 2015, 4, .	2.8	35
194	Aziridines as intermediates in diversity-oriented syntheses of alkaloids. Tetrahedron Letters, 2009, 50, 3230-3233.	0.7	34
195	A Small-Molecule Inducer of PDX1 Expression Identified by High-Throughput Screening. Chemistry and Biology, 2013, 20, 1513-1522.	6.2	34
196	Diversity-Oriented Synthesis-Facilitated Medicinal Chemistry: Toward the Development of Novel Antimalarial Agents. Journal of Medicinal Chemistry, 2014, 57, 8496-8502.	2.9	33
197	Synthesis of Oxazocenones via Gold(I)-Catalyzed 8- <i>Endo</i> -Dig Hydroalkoxylation of Alkynamides. Organic Letters, 2015, 17, 418-421.	2.4	33
198	Modular Synthesis and Preliminary Biological Evaluation of Stereochemically Diverse 1,3-Dioxanes. Chemistry and Biology, 2004, 11, 1279-1291.	6.2	32

#	Article	IF	CITATIONS
199	Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. ELife, 2019, 8, .	2.8	32
200	Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling. Journal of the American Chemical Society, 2015, 137, 7929-7934.	6.6	29
201	Diversity-Oriented Synthesis Probe TargetsPlasmodium falciparumCytochrome b Ubiquinone Reduction Site and Synergizes With Oxidation Site Inhibitors. Journal of Infectious Diseases, 2015, 211, 1097-1103.	1.9	29
202	Expanding Stereochemical and Skeletal Diversity Using Petasis Reactions and 1,3-Dipolar Cycloadditions. Organic Letters, 2010, 12, 5230-5233.	2.4	28
203	Identification of a selective small molecule inhibitor of breast cancer stem cells. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3571-3574.	1.0	28
204	Structure–activity relationships of GPX4 inhibitor warheads. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127538.	1.0	28
205	Quantitative-Proteomic Comparison of Alpha and Beta Cells to Uncover Novel Targets for Lineage Reprogramming. PLoS ONE, 2014, 9, e95194.	1.1	27
206	Cell-specific transcriptional control of mitochondrial metabolism by TIF1 \hat{I}^3 drives erythropoiesis. Science, 2021, 372, 716-721.	6.0	25
207	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.	2.9	24
208	Ring-Opening and Ring-Closing Reactions of a Shikimic Acid-Derived Substrate Leading to Diverse Small Molecules. ACS Combinatorial Science, 2007, 9, 245-253.	3.3	23
209	Synthesis of piperlogs and analysis of their effects on cells. Tetrahedron, 2013, 69, 7559-7567.	1.0	23
210	Efficient Routes to a Diverse Array of Amino Alcohol-Derived Chiral Fragments. ACS Combinatorial Science, 2016, 18, 569-574.	3.8	23
211	CTD2 Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	23
212	6-Phosphogluconate Dehydrogenase Links Cytosolic Carbohydrate Metabolism to Protein Secretion via Modulation of Glutathione Levels. Cell Chemical Biology, 2019, 26, 1306-1314.e5.	2.5	22
213	Domain-specific Quantification of Prion Protein in Cerebrospinal Fluid by Targeted Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 2388-2400.	2.5	22
214	Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors. Cell Reports, 2015, 10, 755-770.	2.9	21
215	Inhibition of Zinc-Dependent Histone Deacetylases with a Chemically Triggered Electrophile. ACS Chemical Biology, 2016, 11, 1844-1851.	1.6	21
216	Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1. ACS Medicinal Chemistry Letters, 2016, 7, 944-949.	1.3	21

#	Article	IF	Citations
217	RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines. Bioinformatics, 2018, 34, 3332-3339.	1.8	21
218	Stereochemical diversity as a source of discovery in chemical biology. Current Research in Chemical Biology, 2022, 2, 100028.	1.4	21
219	Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. Integrative Biology (United Kingdom), 2009, 1, 311.	0.6	20
220	Small-molecule control of cytokine function: new opportunities for treating immune disorders. Current Opinion in Chemical Biology, 2014, 23, 23-30.	2.8	20
221	Identification of Novel Epoxide Inhibitors of Hepatitis C Virus Replication Using a High-Throughput Screen. Antimicrobial Agents and Chemotherapy, 2007, 51, 3756-3759.	1.4	19
222	Automated Structure–Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles. Journal of Biomolecular Screening, 2014, 19, 738-748.	2.6	19
223	Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines. Nature Communications, 2021, 12, 343.	5.8	19
224	1 H and 15 N assignments and secondary structure of the PI3K SH3 domain. FEBS Letters, 1993, 324, 93-98.	1.3	18
225	Optimization of PDE3A Modulators for SLFN12-Dependent Cancer Cell Killing. ACS Medicinal Chemistry Letters, 2019, 10, 1537-1542.	1.3	17
226	PALP: A rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ. Cell Chemical Biology, 2022, 29, 157-170.e6.	2.5	17
227	An Alkynylboronic Ester Annulation: Development of Synthetic Methods for Application to Diversity-Oriented Organic Synthesis. Angewandte Chemie, 2002, 114, 3406-3410.	1.6	16
228	Disease allele-dependent small-molecule sensitivities in blood cells from monogenic diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 492-497.	3.3	16
229	Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2100-2105.	1.0	16
230	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Science Advances, 2021, 7, eabh3794.	4.7	16
231	Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Reports Medicine, 2021, 2, 100188.	3.3	15
232	From Solution-Phase to Solid-Phase Enyne Metathesis: Crossover in the Relative Performance of Two Commonly Used Ruthenium Pre-Catalysts. Chemistry - A European Journal, 2005, 11, 5086-5093.	1.7	14
233	Using Expression and Genotype to Predict Drug Response in Yeast. PLoS ONE, 2009, 4, e6907.	1.1	14
234	The NIH's role in accelerating translational sciences. Nature Biotechnology, 2012, 30, 16-19.	9.4	14

#	Article	IF	CITATIONS
235	Multimodal small-molecule screening for human prion protein binders. Journal of Biological Chemistry, 2020, 295, 13516-13531.	1.6	14
236	Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine. Clinical Cancer Research, 2020, 26, 4995-5006.	3.2	14
237	Ligandâ€Enabled βâ€Methylene C(sp 3)â^'H Arylation of Masked Aliphatic Alcohols. Angewandte Chemie, 2020, 132, 7857-7861.	1.6	14
238	Signalling an interest. Nature Structural and Molecular Biology, 1994, 1, 417-420.	3.6	13
239	Small-Molecule Reagents for Cellular Pull-Down Experiments. Bioconjugate Chemistry, 2008, 19, 585-587.	1.8	13
240	Indolinyl-Thiazole Based Inhibitors of Scavenger Receptor-BI (SR-BI)-Mediated Lipid Transport. ACS Medicinal Chemistry Letters, 2015, 6, 375-380.	1.3	11
241	High Throughput Screen Identifies Interferon î³-Dependent Inhibitors of <i>Toxoplasma gondii</i> Growth. ACS Infectious Diseases, 2018, 4, 1499-1507.	1.8	11
242	An Asymmetric Synthesis of (+)-Cryptone. Synthetic Communications, 1990, 20, 1159-1165.	1.1	10
243	Divergent Synthesis and Real-Time Biological Annotation of Optically Active Tetrahydrocyclopenta[<i>c</i>]pyranone Derivatives. Organic Letters, 2016, 18, 6280-6283.	2.4	10
244	Modular Synthesis of Cyclopropaneâ€Fused <i>N</i> à€Heterocycles Enabled by Underexplored Diazo Reagents. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
245	Kombinatorische Synthese und mehrdimensionale NMRâ€Spektroskopie: ein Beitrag zum Verstädnis von Proteinâ€Ligandâ€Wechselwirkungen. Angewandte Chemie, 1995, 107, 1041-1058.	1.6	9
246	Quantifying fitness distributions and phenotypic relationships in recombinant yeast populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10553-10558.	3.3	9
247	Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2594-2598.	1.0	9
248	The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes. SLAS Discovery, 2021, 26, 855-861.	1.4	8
249	Diversity-oriented Synthesis., 0,, 483-518.		7
250	Rethinking relationships between natural products. Nature Chemical Biology, 2007, 3, 352-352.	3.9	7
251	DIFFERENTIAL PATHWAY DEPENDENCY DISCOVERY ASSOCIATED WITH DRUG RESPONSE ACROSS CANCER CELL LINES. , 2017, 22, 497-508.		7
252	Controlling Protein–Protein Interactions Using Chemical Inducers and Disrupters of Dimerization. , 0, , 227-249.		7

#	Article	IF	CITATIONS
253	Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase. Nature Communications, 2022, 13, 459.	5 . 8	7
254	Rationales Design neuer Rezeptorâ€Ligandâ€Kombinationen. Angewandte Chemie, 1995, 107, 2313-2317.	1.6	6
255	Crystallization-Based Synthetic Route to Antimalarial Agent BRD5018: Diazocene Ring Formation via a Staudinger-aza-Wittig Reaction on an Azetidine-Ribose Template. Organic Process Research and Development, 2022, 26, 817-831.	1.3	5
256	Novel quaternary structures of the human prion protein globular domain. Biochimie, 2021, 191, 118-125.	1.3	4
257	Inhibition of Plasmodium falciparum phenylalanine tRNA synthetase provides opportunity for antimalarial drug development. Structure, 2022, 30, 962-972.e3.	1.6	4
258	Using Natural Products to Unravel Cell Biology. , 0, , 95-114.		3
259	A Soft-Drug Histone Deacetylase Inhibitor for Cutaneous T-Cell Lymphoma Blood, 2007, 110, 800-800.	0.6	2
260	Drugs Targeting Protein–Protein Interactions. , 0, , 979-1002.		2
261	Synthesis of skeletally diverse \hat{l}^2 -lactam haptens for the <i>in vitro</i> diagnosis of IgE-mediated drug allergy. Chemical Communications, 2022, 58, 5964-5967.	2.2	2
262	Chemical Strategies for Activity-based Proteomics. , 0, , 403-426.		1
263	The Biarsenical-tetracysteine Protein Tag: Chemistry and Biological Applications. , 0, , 427-457.		1
264	Chemical Approaches to Exploit Fusion Proteins for Functional Studies., 0,, 458-479.		1
265	Niche-Based Screening Identifies Novel Small Molecules That Overcome Stromal Effects in Multiple Myeloma. Blood, 2012, 120, 571-571.	0.6	1
266	Structural Insight into Allosteric Inhibition of Mycobacterium tuberculosis Tryptophan Synthase. FASEB Journal, 2017, 31, 765.12.	0.2	1
267	Managerial Challenges in Implementing Chemical Biology Platforms. , 0, , 789-803.		1
268	Reverse Chemical Genetics– An Important Strategy for the Study of Protein Function in Chemical Biology and Drug Discovery. , 0, , 355-384.		1
269	Chemical Biology of Kinases Studied by NMR Spectroscopy. , 0, , 852-890.		1
270	Chemical Complementation: Bringing the Power of Genetics to Chemistry., 0,, 199-226.		0

#	Article	lF	CITATIONS
271	Chemical Biology Towards Precision Medicine. Israel Journal of Chemistry, 2017, 57, 174-178.	1.0	O
272	1980s Camelot. Journal of Antibiotics, 2019, 72, 323-323.	1.0	0
273	Identification and Characterization of Novel Small-Molecule Inhibitors of the Replication Checkpoint Blood, 2004, 104, 763-763.	0.6	O
274	Targeting the Protein Degradation Pathway in Multiple Myeloma with Synergistic, Selective Small Molecules Blood, 2005, 106, 2471-2471.	0.6	0
275	Histone Deacetylase-6 (HDAC6) Modulates Akt and STAT3 Activity Via Heat Shock Protein (Hsp) 90 in Human Multiple Myeloma (MM) Cells Blood, 2006, 108, 3426-3426.	0.6	0
276	Design and Characterization of a Novel, Reverse Prodrug Histone Deacetylase Inhibitor for Cutaneous T-Cell Lymphoma Blood, 2006, 108, 4759-4759.	0.6	0
277	Discovery and Characterization of Small Molecule Inhibitors of Autophagy for Cancer Therapy Blood, 2006, 108, 2606-2606.	0.6	0
278	Autophagy as a Target Pathway in Multiple Myeloma: A Forward Chemical Genetic Approach Blood, 2007, 110, 2510-2510.	0.6	0
279	Modular Synthesis of Cyclopropaneâ€Fused Nâ€Heterocycles Enabled by Underexplored Diazo Reagents. Angewandte Chemie, 0, , .	1.6	0
280	Chemical Biology– An Outlook. , 0, , 1143-1150.		0
281	Chemical Biology and Enzymology: Protein Phosphorylation as a Case Study., 0,, 385-402.		0