Stuart L Schreiber

List of Publications by Citations

Source: https://exaly.com/author-pdf/8101657/stuart-l-schreiber-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45,102 90 309 211 h-index g-index citations papers 16.1 52,081 7.59 341 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
309	Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. <i>Cell</i> , 1991 , 66, 807-15	56.2	3538
308	Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156, 317-331	56.2	2104
307	The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. <i>Nature</i> , 2008 , 452, 230-3	50.4	2056
306	Printing proteins as microarrays for high-throughput function determination. Science, 2000, 289, 1760-	333.3	2033
305	The mechanism of action of cyclosporin A and FK506. <i>Trends in Immunology</i> , 1992 , 13, 136-42		1937
304	A mammalian protein targeted by G1-arresting rapamycin-receptor complex. <i>Nature</i> , 1994 , 369, 756-8	50.4	1617
303	Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. <i>Science</i> , 1999 , 286, 971-4	33.3	1450
302	A planning strategy for diversity-oriented synthesis. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 46-58	16.4	1239
301	A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. <i>Nature</i> , 1989 , 341, 758-60	50.4	1216
300	A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. <i>Cell</i> , 2017 , 171, 1437-1452.e17	56.2	1132
299	Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. <i>Science</i> , 2014 , 343, 301-5	33.3	969
298	Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 4389-94	11.5	890
297	Selective killing of cancer cells by a small molecule targeting the stress response to ROS. <i>Nature</i> , 2011 , 475, 231-4	50.4	845
296	Control of p70 s6 kinase by kinase activity of FRAP in vivo. <i>Nature</i> , 1995 , 377, 441-6	50.4	626
295	Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. <i>Nature</i> , 2017 , 547, 453-457	50.4	620
294	Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. <i>Nature</i> , 1998 , 395, 917-21	50.4	558
293	Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 8567-72	11.5	526

292	Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. <i>Nature</i> , 2017 , 551, 247-250	50.4	522
291	Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. <i>Nature Chemical Biology</i> , 2007 , 3, 331-8	11.7	513
290	Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. <i>Chemistry and Biology</i> , 2002 , 9, 3-16		477
289	Towards the optimal screening collection: a synthesis strategy. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 48-56	16.4	471
288	Printing Small Molecules as Microarrays and Detecting ProteinLigand Interactions en Masse. Journal of the American Chemical Society, 1999 , 121, 7967-7968	16.4	408
287	An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. <i>Cell</i> , 2013 , 154, 1151-1161	56.2	392
286	Chemical genetics resulting from a passion for synthetic organic chemistry. <i>Bioorganic and Medicinal Chemistry</i> , 1998 , 6, 1127-52	3.4	387
285	Correlating chemical sensitivity and basal gene expression reveals mechanism of action. <i>Nature Chemical Biology</i> , 2016 , 12, 109-16	11.7	365
284	Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. <i>Cancer Discovery</i> , 2015 , 5, 1210-23	24.4	363
283	Generating diverse skeletons of small molecules combinatorially. <i>Science</i> , 2003 , 302, 613-8	33.3	350
282	Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. <i>Nature</i> , 2002 , 416, 653-7	50.4	344
281	Signaling network model of chromatin. <i>Cell</i> , 2002 , 111, 771-8	56.2	319
280	Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell, 1992, 70, 365-8	56.2	309
279	Molecular cloning and overexpression of the human FK506-binding protein FKBP. <i>Nature</i> , 1990 , 346, 671-4	50.4	299
278	Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5992-7	11.5	295
277	N-oxide promoted pauson-khand cyclizations at room temperature. <i>Tetrahedron Letters</i> , 1990 , 31, 5289	9- <u>5</u> 292	291
276	Dimerization as a regulatory mechanism in signal transduction. <i>Annual Review of Immunology</i> , 1998 , 16, 569-92	34.7	279
275	Eine Strategie fildie Diversitts-orientierte Synthese. <i>Angewandte Chemie</i> , 2004 , 116, 48-60	3.6	261

274	Small molecules: the missing link in the central dogma. <i>Nature Chemical Biology</i> , 2005 , 1, 64-6	11.7	255
273	Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 18787-92	11.5	253
272	From knowing to controlling: a path from genomics to drugs using small molecule probes. <i>Science</i> , 2003 , 300, 294-5	33.3	253
271	A library of spirooxindoles based on a stereoselective three-component coupling reaction. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16077-86	16.4	246
270	A small molecule that binds Hedgehog and blocks its signaling in human cells. <i>Nature Chemical Biology</i> , 2009 , 5, 154-6	11.7	239
269	Regulatory intramolecular association in a tyrosine kinase of the Tec family. <i>Nature</i> , 1997 , 385, 93-7	50.4	237
268	Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 7741-6	11.5	235
267	Dimeric ligands define a role for transcriptional activation domains in reinitiation. <i>Nature</i> , 1996 , 382, 822-6	50.4	234
266	Pairwise use of complexity-generating reactions in diversity-oriented organic synthesis. <i>Organic Letters</i> , 2000 , 2, 709-12	6.2	232
265	A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. <i>Nature Communications</i> , 2019 , 10, 1617	17.4	218
264	Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. <i>Cell</i> , 2016 , 167, 171-186.e15	56.2	214
263	Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. <i>Chemistry and Biology</i> , 2000 , 7, 275-86		211
262	Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16594-9	11.5	208
261	The landscape of cancer cell line metabolism. <i>Nature Medicine</i> , 2019 , 25, 850-860	50.5	188
260	Small-Molecule Microarrays: Covalent Attachment and Screening of Alcohol-Containing Small Molecules on Glass Slides. <i>Journal of the American Chemical Society</i> , 2000 , 122, 7849-7850	16.4	177
259	High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. <i>Chemistry and Biology</i> , 1999 , 6, 71-83		176
258	A synthesis strategy yielding skeletally diverse small molecules combinatorially. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14095-104	16.4	174
257	Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 15115-20	11.5	172

(2020-2003)

256	Integration of growth factor and nutrient signaling: implications for cancer biology. <i>Molecular Cell</i> , 2003 , 12, 271-80	17.6	172
255	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. <i>Nature</i> , 2016 , 538, 344-349	50.4	172
254	Synthesis and cellular profiling of diverse organosilicon small molecules. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1020-1	16.4	170
253	Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8420-1	16.4	167
252	Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. <i>Bioconjugate Chemistry</i> , 2010 , 21, 14-9	6.3	166
251	On the Conformation and Structure of Organometal Complexes in the Solid State: Two Studies Relevant to Chemical Synthesis. <i>Angewandte Chemie International Edition in English</i> , 1990 , 29, 256-272		164
250	Short synthesis of skeletally and stereochemically diverse small molecules by coupling petasis condensation reactions to cyclization reactions. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3635-8	16.4	151
249	Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. <i>Nature Chemical Biology</i> , 2020 , 16, 302-309	11.7	144
248	Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10911-6	11.5	141
247	Multiplex cytological profiling assay to measure diverse cellular states. <i>PLoS ONE</i> , 2013 , 8, e80999	3.7	136
246	Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. <i>Organic Letters</i> , 2001 , 3, 4239-42	6.2	131
245	Three-part inventions: intracellular signaling and induced proximity. <i>Trends in Biochemical Sciences</i> , 1996 , 21, 418-22	10.3	128
244	Natural Products as Probes of Cellular Function: Studies of Immunophilins. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 384-400		128
243	High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. <i>Nature Biotechnology</i> , 2016 , 34, 419-23	44.5	127
242	Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. <i>Nature Structural Biology</i> , 1999 , 6, 953-60		127
241	Organic synthesis toward small-molecule probes and drugs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6699-702	11.5	124
240	Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14740-5	16.4	122
239	Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. <i>Nature</i> , 2020 , 585, 603-608	50.4	121

238	Fragmentation reactions of .alphaalkoxy hydroperoxides and application to the synthesis of the macrolide (.+)-recifeiolide. <i>Journal of the American Chemical Society</i> , 1980 , 102, 6163-6165	16.4	119
237	Complex alpha-pyrones synthesized by a gold-catalyzed coupling reaction. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8250-3	16.4	118
236	Chemical probes and drug leads from advances in synthetic planning and methodology. <i>Nature Reviews Drug Discovery</i> , 2018 , 17, 333-352	64.1	117
235	A robust small-molecule microarray platform for screening cell lysates. <i>Chemistry and Biology</i> , 2006 , 13, 493-504		114
234	Skeletal diversity via a branched pathway: efficient synthesis of 29 400 discrete, polycyclic compounds and their arraying into stock solutions. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13402-4	16.4	112
233	Skeletal diversity via a folding pathway: synthesis of indole alkaloid-like skeletons. <i>Organic Letters</i> , 2005 , 7, 47-50	6.2	109
232	An alkylsilyl-tethered, high-capacity solid support amenable to diversity-oriented synthesis for one-bead, one-stock solution chemical genetics. <i>ACS Combinatorial Science</i> , 2001 , 3, 312-8		106
231	Structural biasing elements for in-cell histone deacetylase paralog selectivity. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5586-7	16.4	104
230	Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. <i>Cell</i> , 2015 , 161, 1252-65	56.2	100
229	Development of small-molecule probes that selectively kill cells induced to express mutant RAS. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 1822-6	2.9	99
229		2.9	
	Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1822-6 Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole.		
228	Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. Journal of the American Chemical Society, 2009, 131, 2900-5 A one-bead, one-stock solution approach to chemical genetics: part 1. Chemistry and Biology, 2001,		98
228	Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. Journal of the American Chemical Society, 2009, 131, 2900-5 A one-bead, one-stock solution approach to chemical genetics: part 1. Chemistry and Biology, 2001, 8, 1167-82 Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical	16.4	98
228 227 226	Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. Journal of the American Chemical Society, 2009, 131, 2900-5 A one-bead, one-stock solution approach to chemical genetics: part 1. Chemistry and Biology, 2001, 8, 1167-82 Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical Biology, 2013, 9, 840-848 A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nature	16.4	98 98 96 95
228 227 226 225	Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. Journal of the American Chemical Society, 2009, 131, 2900-5 A one-bead, one-stock solution approach to chemical genetics: part 1. Chemistry and Biology, 2001, 8, 1167-82 Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical Biology, 2013, 9, 840-848 A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nature Communications, 2016, 7, 11428 High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell	16.4 11.7 17.4	98 98 96 95
228227226225224	Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. Journal of the American Chemical Society, 2009, 131, 2900-5 A one-bead, one-stock solution approach to chemical genetics: part 1. Chemistry and Biology, 2001, 8, 1167-82 Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical Biology, 2013, 9, 840-848 A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nature Communications, 2016, 7, 11428 High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host and Microbe, 2016, 19, 114-26 Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nature	16.4 11.7 17.4 23.4	98 98 96 95 94

(2006-2016)

220	Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13162-13167	11.5	89	
219	Gold(I)-catalyzed coupling reactions for the synthesis of diverse small molecules using the build/couple/pair strategy. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5667-74	16.4	88	
218	Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Research, 2013, 73, 6289-98	10.1	83	
217	Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 2376-9	16.4	83	
216	A one-bead, one-stock solution approach to chemical genetics: part 2. <i>Chemistry and Biology</i> , 2001 , 8, 1183-95		83	
215	Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6817-22	11.5	81	
214	Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. <i>Nature Chemical Biology</i> , 2006 , 2, 103-9	11.7	81	
213	SnapShot: Ca2+-calcineurin-NFAT signaling. <i>Cell</i> , 2009 , 138, 210, 210.e1	56.2	80	
212	Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7960-4	16.4	80	
211	The identification of myriocin-binding proteins. <i>Chemistry and Biology</i> , 1999 , 6, 221-35		80	
210	Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. <i>Biochemistry</i> , 1999 , 38, 14711-7	3.2	80	
209	Syntheses of Epyrones using gold-catalyzed coupling reactions. <i>Organic Letters</i> , 2011 , 13, 2834-6	6.2	79	
208	Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5106-5109	16.4	77	
207	Rational Design of Orthogonal Receptor ligand Combinations. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 2129-2132		77	
206	Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. <i>Nature Chemical Biology</i> , 2020 , 16, 497-506	11.7	76	
205	A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. <i>Nature Chemical Biology</i> , 2017 , 13, 943-950	11.7	75	
204	Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. <i>Neuropharmacology</i> , 2013 , 64, 81-96	5.5	75	
203	An oligomer-based approach to skeletal diversity in small-molecule synthesis. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14766-7	16.4	74	

Synthetic strategy toward skeletal diversity via solid-supported, otherwise unstable reactive intermediates. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1681-5	16.4	74
The Rise of Molecular Glues. <i>Cell</i> , 2021 , 184, 3-9	56.2	74
The effect of the immunosuppressant FK-506 on alternate pathways of T cell activation. <i>European Journal of Immunology</i> , 1991 , 21, 439-45	6.1	73
Discovery of histone deacetylase 8 selective inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2011 , 21, 2601-5	2.9	72
Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp)-H Arylation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11300-11306	16.4	71
Convergent diversity-oriented synthesis of small-molecule hybrids. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2249-52	16.4	71
The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. <i>Cell Chemical Biology</i> , 2016 , 23, 3-9	8.2	70
Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 4320 Encoded and Spatially Segregated Dihydropyrancarboxamides We thank the National Institute of General Medical Sciences (GM-52067) for support of this research, and Dr. John Tallarico and Max	16.4	69
Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 2185-7	8.3	68
Distinct biological network properties between the targets of natural products and disease genes. Journal of the American Chemical Society, 2010 , 132, 9259-61	16.4	67
Proximity versus allostery: the role of regulated protein dimerization in biology. <i>Chemistry and Biology</i> , 1994 , 1, 131-6		65
Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 6319-25	2.9	64
Small-molecule targeting of brachyury transcription factor addiction in chordoma. <i>Nature Medicine</i> , 2019 , 25, 292-300	50.5	62
Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics. <i>Cancer Research</i> , 2006 , 66, 8935-42	10.1	62
High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. <i>ACS Infectious Diseases</i> , 2016 , 2, 281-293	5.5	61
A boronic ester annulation strategy for diversity-oriented organic synthesis. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 152-4	16.4	60
A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. <i>GigaScience</i> , 2017 , 6, 1-5	7.6	59
Towards patient-based cancer therapeutics. <i>Nature Biotechnology</i> , 2010 , 28, 904-6	44.5	58
	The Rise of Molecular Glues. <i>Cell</i> , 2021, 184, 3-9 The effect of the immunosuppressant FK-506 on alternate pathways of T cell activation. <i>European Journal of Immunology</i> , 1991, 21, 439-45 Discovery of histone deacetylase 8 selective inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2011, 21, 2601-5 Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp)-H Arylation. <i>Journal of the American Chemical Society</i> , 2017, 139, 11300-11306 Convergent diversity-oriented synthesis of small-molecule hybrids. <i>Angewandte Chemie - International Edition</i> , 2005, 44, 2249-52 The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. <i>Cell Chemical Biology</i> , 2016, 23, 3-9 Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 4320 Encoded and Spatially Segregated Dihydropyrancarboxamides We thank the National Institute of General Medical Sciences (GM-52067) for support of this research, and Dr. John Tallarico and Marka Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. <i>Journal of Medicinal Chemistry</i> , 2009, 52, 2185-7 Distinct biological network properties between the targets of natural products and disease genes. <i>Journal of the American Chemical Society</i> , 2010, 132, 9259-61 Proximity versus allostery: the role of regulated protein dimerization in biology. <i>Chemistry and Biology</i> , 1994, 1, 131-6 Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009, 19, 6319-25 Small-molecule targeting of brachyury transcription factor addiction in chordoma. <i>Nature Medicine</i> , 2019, 25, 292-300 Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics. <i>Cancer Research</i> , 2006, 66, 8935-42 High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria	The Rise of Molecular Glues. Cell, 2021, 184, 3-9 56.2 The effect of the immunosuppressant FK-506 on alternate pathways of T cell activation. European Journal of Immunology, 1991, 21, 439-45 Discovery of histone deacetylase 8 selective inhibitors. Bioorganic and Medicinal Chemistry Letters, 29 Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp)-H Arylation. Journal of the American Chemical Society, 2017, 139, 11300-11306 Convergent diversity-oriented synthesis of small-molecule hybrids. Angewandte Chemie-International Edition, 2005, 44, 2249-52 The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chemical Biology, 2016, 23, 3-9 Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 432-0 Encoded and Spatially Segregated Dihydropyrancarboxamides We thank the National Institute of General Medical Sciences (CM-52067) for support of this research, and Dr. John Tallarico and Max Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. Journal of Medicinal Chemistry, 2009, 52, 2185-7 Distinct biological network properties between the targets of natural products and disease genes. Journal of the American Chemical Society, 2010, 132, 9259-61 Proximity versus allostery: the role of regulated protein dimerization in biology. Chemistry and Biology, 1994, 1, 131-6 Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6319-25 Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nature Medicine, 2019, 25, 292-300 Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics. Concer Research, 2006, 66, 8935-42 High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infectious Diseases, 2016, 2,

WOMBAT and WOMBAT-PK: Bioactivity Databases for Lead and Drug Discovery760-786		58	
An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. <i>Cell</i> , 2020 , 182, 1009-1026.e29	56.2	57	
Small-molecule diversity using a skeletal transformation strategy. <i>Organic Letters</i> , 2005 , 7, 2535-8	6.2	55	
Catalytic diastereoselective petasis reactions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8172	2156.4	54	
Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. <i>Nature</i> , 1995 , 376, 788-91	50.4	54	
Evaluating drug targets through human loss-of-function genetic variation. <i>Nature</i> , 2020 , 581, 459-464	50.4	53	
Unifying principles of bifunctional, proximity-inducing small molecules. <i>Nature Chemical Biology</i> , 2020 , 16, 369-378	11.7	53	
Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. <i>Chemistry and Biology</i> , 1994 , 1, 163-72		53	
Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. <i>ACS Chemical Biology</i> , 2013 , 8, 923-9	4.9	52	
Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10543-5	16.4	52	
Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides. <i>Biomolecules</i> , 2019 , 10,	5.9	52	
Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. <i>Nature Chemical Biology</i> , 2016 , 12, 102-8	11.7	51	
Small-molecule inducers of insulin expression in pancreatic alpha-cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15099-104	11.5	51	
An alkynylboronic ester annulation: development of synthetic methods for application to diversity-oriented organic synthesis. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3272-6	16.4	49	
Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria. <i>ACS Medicinal Chemistry Letters</i> , 2012 , 3, 112-117	4.3	48	
DNA Barcoding a Complete Matrix of Stereoisomeric Small Molecules. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10225-10235	16.4	47	
A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering. <i>Cell</i> , 2019 , 179, 1222-1238.e17	56.2	47	
NAMPT is the cellular target of STF-31-like small-molecule probes. <i>ACS Chemical Biology</i> , 2014 , 9, 2247-5	5 4 .9	47	
	An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. <i>Cell</i> , 2020, 182, 1009-1026.e29 Small-molecule diversity using a skeletal transformation strategy. <i>Organic Letters</i> , 2005, 7, 2535-8 Catalytic diastereoselective petasis reactions. <i>Angewandte Chemie - International Edition</i> , 2011, 50, 8177. Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. <i>Nature</i> , 1995, 376, 788-91 Evaluating drug targets through human loss-of-function genetic variation. <i>Nature</i> , 2020, 581, 459-464 Unifying principles of bifunctional, proximity-inducing small molecules. <i>Nature Chemical Biology</i> , 2020, 16, 369-378 Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. <i>Chemistry and Biology</i> , 1994, 1, 163-72 Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. <i>ACS Chemical Biology</i> , 2013, 8, 923-9 Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. <i>Journal of the American Chemical Society</i> , 2003, 125, 10543-5 Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides. <i>Biomolecules</i> , 2019, 10, Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. <i>Nature Chemical Biology</i> , 2016, 12, 102-8 Small-molecule inducers of insulin expression in pancreatic alpha-cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010, 107, 15099-104 An alkynylboronic ester annulation: development of synthetic methods for application to diversity-oriented organic synthesis. <i>Angewandre Chemie - International Edition</i> , 2002, 41, 3272-6 Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria. <i>ACS Medicinal Chemistry Letters</i> , 2012, 3, 112-117 DNA Barcoding a Complete Matrix of Stereoisomeric Small Molecules. <i>Journal of the American Chemical Society</i> , 2019, 179, 1222-1238.e17	An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell, 2020, 182, 1009-1026.e29 Small-molecule diversity using a skeletal transformation strategy. Organic Letters, 2005, 7, 2535-8 6.2 Catalytic diastereoselective petasis reactions. Angewandte Chemie - International Edition, 2011, 50, 8172-55.4 Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature, 1995, 376, 788-91 Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464 Unifying principles of bifunctional, proximity-inducing small molecules. Nature Chemical Biology, 2020, 16, 369-378 Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chemistry and Biology, 1994, 1, 163-72 Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. ACS Chemical Biology, 2013, 8, 923-9 Chemical genomic profiling of biological networks using graph theory and combinations of small molecules perturbations. Journal of the American Chemical Society, 2003, 125, 10543-5 Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides. Biomolecules, 2019, 10, Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nature Chemical Biology, 2016, 12, 102-8 Small-molecule inducers of insulin expression in pancreatic alpha-cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15099-104 An alkynylboronic ester annulation: development of synthetic methods for application to diversity-Oriented organic synthesis. Angewandse Chemie - International Edition, 2002, 41, 3272-6 Diversity-Oriented Synthesis Vields a Novel Lead for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2012, 3, 112-117 DNA Barcoding a Complete Matrix of Stereoisomeric Small Molecules. Journal of the American Chemical Society, 2019, 141, 10225-10235 A Compendium of Gen	An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell, 2020. 562 57 Small-molecule diversity using a skeletal transformation strategy. Organic Letters, 2005, 7, 2535-8 6.2 55 Catalytic diastereoselective petasis reactions. Angewandte Chemie - International Edition, 2011, 50, 8172-56-4 54 Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature, 1995, 376, 788-91 50-4 54 Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464 50-4 53 Unifying principles of bifunctional, proximity-inducing small molecules. Nature Chemical Biology, 2020, 16, 369-378 11.7 53 Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chemistry and Biology, 1994, 1, 163-72 53 Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. ACS Chemical Biology, 2013, 8, 923-9 49 Chemical genomic profiling of biological networks using graph theory and combinations of small molecules perturbations. Journal of the American Chemical Society, 2003, 125, 10543-5 16-4 52 Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides. Biomolecules, 2019, 10, 10, 104, 102-8 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

166	Stereochemical and skeletal diversity arising from amino propargylic alcohols. <i>Organic Letters</i> , 2010 , 12, 2822-5	6.2	47
165	DNA-Compatible [3 + 2] Nitrone-Olefin Cycloaddition Suitable for DEL Syntheses. <i>Organic Letters</i> , 2019 , 21, 1325-1330	6.2	47
164	Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E4281-7	11.5	46
163	Skeletally diverse small molecules using a build/couple/pair strategy. <i>Organic Letters</i> , 2009 , 11, 1559-62	6.2	46
162	Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight, 2019, 5,	9.9	46
161	Small-molecule screening identifies inhibition of salt-inducible kinases as a therapeutic strategy to enhance immunoregulatory functions of dendritic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12468-73	11.5	45
160	1H and 15N assignments and secondary structure of the Src SH3 domain. FEBS Letters, 1993, 324, 87-92	3.8	45
159	DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with In Silico Analysis to Identify Novel Therapeutic Targets. <i>Clinical Cancer Research</i> , 2016 , 22, 3903-14	12.9	43
158	Diversity synthesis of complex pyridines yields a probe of a neurotrophic signaling pathway. <i>Organic Letters</i> , 2008 , 10, 2621-4	6.2	42
157	Linking tumor mutations to drug responses via a quantitative chemical-genetic interaction map. <i>Cancer Discovery</i> , 2015 , 5, 154-67	24.4	40
156	Macrocycloadditions leading to conformationally restricted small molecules. <i>Organic Letters</i> , 2006 , 8, 2063-6	6.2	40
155	Exploiting site-site interactions on solid support to generate dimeric molecules. <i>Organic Letters</i> , 2001 , 3, 1185-8	6.2	40
154	Combinatorial Synthesis and Multidimensional NMR Spectroscopy: An Approach to Understanding Protein Ligand Interactions. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 953-969		39
153	The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells. <i>Cancer Biology and Therapy</i> , 2011 , 12, 484-93	4.6	38
152	Exploring the Specificity Pockets of Two Homologous SH3 Domains Using Structure-Based, Split-Pool Synthesis and Affinity-Based Selection. <i>Journal of the American Chemical Society</i> , 1998 , 120, 23-29	16.4	38
151	An expanded universe of cancer targets. <i>Cell</i> , 2021 , 184, 1142-1155	56.2	38
150	Targeting Dependency on the GPX4 Lipid Peroxide Repair Pathway for Cancer Therapy. <i>Biochemistry</i> , 2018 , 57, 2059-2060	3.2	37
149	A Chemical Biology View of Bioactive Small Molecules and a Binder-Based Approach to Connect Biology to Precision Medicines. <i>Israel Journal of Chemistry</i> , 2019 , 59, 52-59	3.4	37

(2007-2016)

148	Development of ML390: A Human DHODH Inhibitor That Induces Differentiation in Acute Myeloid Leukemia. <i>ACS Medicinal Chemistry Letters</i> , 2016 , 7, 1112-1117	4.3	36
147	Recent achievements and current trajectories of diversity-oriented synthesis. <i>Current Opinion in Chemical Biology</i> , 2020 , 56, 1-9	9.7	36
146	Synergistic Effects of Stereochemistry and Appendages on the Performance Diversity of a Collection of Synthetic Compounds. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11784-11790	16.4	35
145	Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity and Mode of Action Studies. <i>ACS Medicinal Chemistry Letters</i> , 2012 , 3, 808-813	4.3	35
144	Diversity-oriented synthesis yields a new drug lead for treatment of chagas disease. <i>ACS Medicinal Chemistry Letters</i> , 2014 , 5, 149-53	4.3	34
143	Short Synthesis of Skeletally and Stereochemically Diverse Small Molecules by Coupling Petasis Condensation Reactions to Cyclization Reactions. <i>Angewandte Chemie</i> , 2006 , 118, 3717-3720	3.6	34
142	Revealing complex traits with small molecules and naturally recombinant yeast strains. <i>Chemistry and Biology</i> , 2006 , 13, 319-27		34
141	Development of Chemical Probes for Investigation of Salt-Inducible Kinase Function in Vivo. <i>ACS Chemical Biology</i> , 2016 , 11, 2105-11	4.9	33
140	Small-Molecule Suppressors of Cytokine-Induced beta-Cell Apoptosis. <i>ACS Chemical Biology</i> , 2010 , 5, 729-34	4.9	33
139	Naturstoffe als Sonden zum Studium zellulßer Funktionen Untersuchungen von Immunophilinen. <i>Angewandte Chemie</i> , 1992 , 104, 413-430	3.6	33
138	Discovery of Antimalarial Azetidine-2-carbonitriles That Inhibit Dihydroorotate Dehydrogenase. <i>ACS Medicinal Chemistry Letters</i> , 2017 , 8, 438-442	4.3	32
137	Visualizing Functional Group Distribution in Solid-Support Beads by Using Optical Analysis. <i>Chemistry - A European Journal</i> , 1999 , 5, 3528-3532	4.8	32
136	Integrated genetic and pharmacologic interrogation of rare cancers. <i>Nature Communications</i> , 2016 , 7, 11987	17.4	32
135	Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 8496-502	8.3	31
134	Cell-Specific Calcineurin Inhibition by a Modified Cyclosporin. <i>Journal of the American Chemical Society</i> , 1997 , 119, 1805-1806	16.4	31
133	Diacylfuroxans Are Masked Nitrile Oxides That Inhibit GPX4 Covalently. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20407-20415	16.4	31
132	Aziridines as intermediates in diversity-oriented syntheses of alkaloids. <i>Tetrahedron Letters</i> , 2009 , 50, 3230-3233	2	30
131	Identification of a small-molecule inhibitor of class Ia PI3Ks with cell-based screening. <i>Chemistry and Biology</i> , 2007 , 14, 371-7		30

130	Phosphorylation-Inducing Chimeric Small Molecules. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14052-14057	16.4	30
129	Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7793-7798	11.5	29
128	Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. <i>Nature Chemical Biology</i> , 2017 , 13, 1102-1108	11.7	29
127	Synthesis of oxazocenones via gold(I)-catalyzed 8-endo-dig hydroalkoxylation of alkynamides. <i>Organic Letters</i> , 2015 , 17, 418-21	6.2	29
126	Modular synthesis and preliminary biological evaluation of stereochemically diverse 1,3-dioxanes. <i>Chemistry and Biology</i> , 2004 , 11, 1279-91		29
125	Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. <i>ELife</i> , 2015 , 4,	8.9	29
124	Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11392-11397	11.5	28
123	Towards a treatment for genetic prion disease: trials and biomarkers. <i>Lancet Neurology, The</i> , 2020 , 19, 361-368	24.1	28
122	Water-Compatible Cycloadditions of Oligonucleotide-Conjugated Strained Allenes for DNA-Encoded Library Synthesis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7776-7782	16.4	28
121	Expanding stereochemical and skeletal diversity using petasis reactions and 1,3-dipolar cycloadditions. <i>Organic Letters</i> , 2010 , 12, 5230-3	6.2	27
120	Real-Time Biological Annotation of Synthetic Compounds. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8920-7	16.4	27
119	Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit. <i>Cell Chemical Biology</i> , 2020 , 27, 463-471	8.2	27
118	Identification of a selective small molecule inhibitor of breast cancer stem cells. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 3571-4	2.9	26
117	Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. <i>Nucleic Acids Research</i> , 2020 , 48, 10615-10631	20.1	26
116	A small-molecule inducer of PDX1 expression identified by high-throughput screening. <i>Chemistry and Biology</i> , 2013 , 20, 1513-22		25
115	Modular, stereocontrolled C-H/C-C activation of alkyl carboxylic acids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8721-8727	11.5	24
114	Discovery of a Small-Molecule Probe for V-ATPase Function. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5563-8	16.4	24
113	KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine. <i>Cancer Research</i> , 2015 , 75, 2897-906	10.1	22

(2011-2017)

112	Stereospecific Palladium-Catalyzed C-H Arylation of Pyroglutamic Acid Derivatives at the C3 Position Enabled by 8-Aminoquinoline as a Directing Group. <i>Organic Letters</i> , 2017 , 19, 4424-4427	6.2	22
111	Ring-opening and ring-closing reactions of a shikimic acid-derived substrate leading to diverse small molecules. <i>ACS Combinatorial Science</i> , 2007 , 9, 245-53		22
110	Diversity-oriented synthesis probe targets Plasmodium falciparum cytochrome b ubiquinone reduction site and synergizes with oxidation site inhibitors. <i>Journal of Infectious Diseases</i> , 2015 , 211, 1097-103	7	21
109	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. <i>Cell Reports</i> , 2019 , 28, 2331-2344.e8	10.6	20
108	Ligand-Enabled EMethylene C(sp)-H Arylation of Masked Aliphatic Alcohols. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7783-7787	16.4	20
107	Efficient Routes to a Diverse Array of Amino Alcohol-Derived Chiral Fragments. <i>ACS Combinatorial Science</i> , 2016 , 18, 569-74	3.9	20
106	Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7929-34	16.4	20
105	Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. <i>Integrative Biology (United Kingdom)</i> , 2009 , 1, 311-7	3.7	20
104	Renal medullary carcinomas depend upon loss and are sensitive to proteasome inhibition. <i>ELife</i> , 2019 , 8,	8.9	20
103	Synthesis of piperlogs and analysis of their effects on cells. <i>Tetrahedron</i> , 2013 , 69, 7559-7559	2.4	19
102	Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors. <i>Cell Reports</i> , 2015 , 10, 755-770	10.6	18
101	Bicyclic azetidines kill the diarrheal pathogen in mice by inhibiting parasite phenylalanyl-tRNA synthetase. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	18
100	Inhibition of Zinc-Dependent Histone Deacetylases with a Chemically Triggered Electrophile. <i>ACS Chemical Biology</i> , 2016 , 11, 1844-51	4.9	18
99	Identification of novel epoxide inhibitors of hepatitis C virus replication using a high-throughput screen. <i>Antimicrobial Agents and Chemotherapy</i> , 2007 , 51, 3756-9	5.9	17
98	Domain-specific Quantification of Prion Protein in Cerebrospinal Fluid by Targeted Mass Spectrometry. <i>Molecular and Cellular Proteomics</i> , 2019 , 18, 2388-2400	7.6	17
97	Small-molecule control of cytokine function: new opportunities for treating immune disorders. <i>Current Opinion in Chemical Biology</i> , 2014 , 23, 23-30	9.7	16
96	1H and 15N assignments and secondary structure of the PI3K SH3 domain. FEBS Letters, 1993, 324, 93-8	3.8	16
95	Disease allele-dependent small-molecule sensitivities in blood cells from monogenic diabetes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 492-7	11.5	15

94	Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. <i>Acta Crystallographica Section D: Structural Biology</i> , 2021 , 77, 237-248	5.5	15
93	RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines. <i>Bioinformatics</i> , 2018 , 34, 3332-3339	7.2	14
92	Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles. <i>Journal of Biomolecular Screening</i> , 2014 , 19, 738-48		14
91	Using expression and genotype to predict drug response in yeast. <i>PLoS ONE</i> , 2009 , 4, e6907	3.7	14
90	New Methods for Protein Bioconjugation593-634		14
89	Convergent Diversity-Oriented Synthesis of Small-Molecule Hybrids. <i>Angewandte Chemie</i> , 2005 , 117, 2289-2292	3.6	14
88	From solution-phase to solid-phase enyne metathesis: crossover in the relative performance of two commonly used ruthenium pre-catalysts. <i>Chemistry - A European Journal</i> , 2005 , 11, 5086-93	4.8	14
87	Small-molecule reagents for cellular pull-down experiments. <i>Bioconjugate Chemistry</i> , 2008 , 19, 585-7	6.3	13
86	CTD2 Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network. <i>Database: the Journal of Biological Databases and Curation</i> , 2017 , 2017,	5	12
85	Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1. <i>ACS Medicinal Chemistry Letters</i> , 2016 , 7, 944-949	4.3	12
84	Catalytic Diastereoselective Petasis Reactions. <i>Angewandte Chemie</i> , 2011 , 123, 8322-8325	3.6	12
83	An Alkynylboronic Ester Annulation: Development of Synthetic Methods for Application to Diversity-Oriented Organic Synthesis. <i>Angewandte Chemie</i> , 2002 , 114, 3406-3410	3.6	12
82	Evaluating potential drug targets through human loss-of-function genetic variation		12
81	Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 2100-5	2.9	11
80	6-Phosphogluconate Dehydrogenase Links Cytosolic Carbohydrate Metabolism to Protein Secretion via Modulation of Glutathione Levels. <i>Cell Chemical Biology</i> , 2019 , 26, 1306-1314.e5	8.2	11
79	Quantitative-proteomic comparison of alpha and Beta cells to uncover novel targets for lineage reprogramming. <i>PLoS ONE</i> , 2014 , 9, e95194	3.7	10
78	Targeting a Therapy-Resistant Cancer Cell State Using Masked Electrophiles as GPX4 Inhibitors		10
77	Divergent Synthesis and Real-Time Biological Annotation of Optically Active Tetrahydrocyclopenta[c]pyranone Derivatives. <i>Organic Letters</i> , 2016 , 18, 6280-6283	6.2	9

(2007-2015)

76	Indolinyl-Thiazole Based Inhibitors of Scavenger Receptor-BI (SR-BI)-Mediated Lipid Transport. <i>ACS Medicinal Chemistry Letters</i> , 2015 , 6, 375-380	4.3	8
75	Synthetic Strategy toward Skeletal Diversity via Solid-Supported, Otherwise Unstable Reactive Intermediates. <i>Angewandte Chemie</i> , 2004 , 116, 1713-1717	3.6	8
74	A Boronic Ester Annulation Strategy for Diversity-Oriented Organic Synthesis. <i>Angewandte Chemie</i> , 2002 , 114, 160-162	3.6	8
73	An Asymmetric Synthesis of (+)-Cryptone. <i>Synthetic Communications</i> , 1990 , 20, 1159-1165	1.7	8
72	Cell-specific transcriptional control of mitochondrial metabolism by TIF1 drives erythropoiesis. <i>Science</i> , 2021 , 372, 716-721	33.3	8
71	Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines. <i>Nature Communications</i> , 2021 , 12, 343	17.4	8
70	Protein Secondary Structure Mimetics as Modulators of Protein Protein and Protein-Ligand Interactions	250-26	598
69	High Throughput Screen Identifies Interferon Edependent Inhibitors of Toxoplasma gondii Growth. <i>ACS Infectious Diseases</i> , 2018 , 4, 1499-1507	5.5	7
68	Optimization of PDE3A Modulators for SLFN12-Dependent Cancer Cell Killing. <i>ACS Medicinal Chemistry Letters</i> , 2019 , 10, 1537-1542	4.3	7
67	Quantifying fitness distributions and phenotypic relationships in recombinant yeast populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 10553-8	11.5	7
66	Diversity-oriented Synthesis483-518		7
65	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. <i>Science Advances</i> , 2021 , 7, eabh3794	14.3	7
64	Structure-activity relationships of GPX4 inhibitor warheads. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2020 , 30, 127538	2.9	7
63	Controlling Protein Protein Interactions Using Chemical Inducers and Disrupters of Dimerization 227-249)	7
62	Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine. <i>Clinical Cancer Research</i> , 2020 , 26, 4995-5006	12.9	6
61	DIFFERENTIAL PATHWAY DEPENDENCY DISCOVERY ASSOCIATED WITH DRUG RESPONSE ACROSS CANCER CELL LINES. <i>Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing</i> , 2017 , 22, 497-508	1.3	6
60	Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 2594-8	2.9	6
59	Rethinking relationships between natural products. <i>Nature Chemical Biology</i> , 2007 , 3, 352	11.7	6

58	Multimodal small-molecule screening for human prion protein binders. <i>Journal of Biological Chemistry</i> , 2020 , 295, 13516-13531	5.4	6
57	Retraction Note: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. <i>Nature</i> , 2018 , 561, 420	50.4	5
56	Kombinatorische Synthese und mehrdimensionale NMR-Spektroskopie: ein Beitrag zum Verstfidnis von Protein-Ligand-Wechselwirkungen. <i>Angewandte Chemie</i> , 1995 , 107, 1041-1058	3.6	5
55	Ligand-Enabled EMethylene C(sp3)日 Arylation of Masked Aliphatic Alcohols. <i>Angewandte Chemie</i> , 2020 , 132, 7857-7861	3.6	4
54	Rationales Design neuer Rezeptor-Ligand-Kombinationen. <i>Angewandte Chemie</i> , 1995 , 107, 2313-2317	3.6	4
53	Prion protein lowering is a disease-modifying therapy across prion disease stages, strains, and endpoin	ts	4
52	Modulation of ferroptosis sensitivity by TXNRD1 in pancreatic cancer cells		4
51	Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. <i>Cell Reports Medicine</i> , 2021 , 2, 100188	18	4
50	Prediction of ADMET Properties1003-1042		4
49	Persister cancer cells: Iron addiction and vulnerability to ferroptosis <i>Molecular Cell</i> , 2021 ,	17.6	4
48	Stereochemical Diversity as a Source of Discovery in Chemical Biology. <i>Current Research in Chemical Biology</i> , 2022 , 2, 100028		4
47	Using Small Molecules to Unravel Biological Mechanisms71-94		3
46	The Molecular Basis of Predicting Druggability804-823		3
45	The Bicyclic Depsipeptide Family of Histone Deacetylase Inhibitors693-720		3
44	Using Natural Products to Unravel Cell Biology95-114		3
43	A chemical biology view of bioactive small molecules and a binder-based approach to connect biology to precision medicines		3
42	The Nuclear Receptor Superfamily and Drug Discovery891-932		3
41	Revealing Biological Specificity by Engineering Protein-Ligand Interactions115-139		2

40	Chemistry and Biology [Historical and Philosophical Aspects3-67		2
39	A Soft-Drug Histone Deacetylase Inhibitor for Cutaneous T-Cell Lymphoma <i>Blood</i> , 2007 , 110, 800-800	2.2	2
38	PALP: A rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ. <i>Cell Chemical Biology</i> , 2021 ,	8.2	2
37	Expressed Protein Ligation 537-566		2
36	Chemical Glycomics as Basis for Drug Discovery668-691		2
35	Controlling Protein Function by Caged Compounds140-173		2
34	Chemical Informatics723-759		1
33	Chemical Strategies for Activity-based Proteomics403-426		1
32	Combinatorial Biosynthesis of Polyketides and Nonribosomal Peptides519-536		1
31	The Search for Chemical Probes to Illuminate Carbohydrate Function635-667		1
30	Niche-Based Screening Identifies Novel Small Molecules That Overcome Stromal Effects in Multiple Myeloma. <i>Blood</i> , 2012 , 120, 571-571	2.2	1
29	Managerial Challenges in Implementing Chemical Biology Platforms789-803		1
28	The Target Family Approach825-851		1
27	Reverse Chemical Genetics[An Important Strategy for the Study of Protein Function in Chemical Biology and Drug Discovery355-384		1
26	HIF-2Edrives an intrinsic vulnerability to ferroptosis in clear cell renal cell carcinoma		1
25	Domain-specific quantification of prion protein in cerebrospinal fluid by targeted mass spectrometry		1
24	Characterization of the prion protein binding properties of antisense oligonucleotides		1
23	Multimodal small-molecule screening for human prion protein binders		1

22	Structural Insight into Allosteric Inhibition of Mycobacterium tuberculosis Tryptophan Synthase. <i>FASEB Journal</i> , 2017 , 31, 765.12	0.9	1
21	The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes. <i>SLAS Discovery</i> , 2021 , 26, 855-861	3.4	1
20	Chemical Synthesis of Proteins and Large Bioconjugates567-592		1
19	The Biarsenical-tetracysteine Protein Tag: Chemistry and Biological Applications427-457		1
18	Chemical Approaches to Exploit Fusion Proteins for Functional Studies458-479		1
17	Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase <i>Nature Communications</i> , 2022 , 13, 459	17.4	О
16	Novel quaternary structures of the human prion protein globular domain. <i>Biochimie</i> , 2021 , 191, 118-12	25 4.6	О
15	Chemical Biology Towards Precision Medicine. <i>Israel Journal of Chemistry</i> , 2017 , 57, 174-178	3.4	
14	Chemical Complementation: Bringing the Power of Genetics to Chemistry199-226		
13	Synthetic Expansion of the Central Dogma271-295		
13	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl 6-Oxohexanoate, 6,6-Dimethoxyhexanal, Methyl 6,6-Dimethoxyhexanoate150-150		
	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl	2.2	
12	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl 6-Oxohexanoate, 6,6-Dimethoxyhexanal, Methyl 6,6-Dimethoxyhexanoate150-150 Identification and Characterization of Novel Small-Molecule Inhibitors of the Replication	2.2	
12	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl 6-Oxohexanoate, 6,6-Dimethoxyhexanal, Methyl 6,6-Dimethoxyhexanoate150-150 Identification and Characterization of Novel Small-Molecule Inhibitors of the Replication Checkpoint <i>Blood</i> , 2004 , 104, 763-763 Targeting the Protein Degradation Pathway in Multiple Myeloma with Synergistic, Selective Small		
12 11 10	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl 6-Oxohexanoate, 6,6-Dimethoxyhexanal, Methyl 6,6-Dimethoxyhexanoate150-150 Identification and Characterization of Novel Small-Molecule Inhibitors of the Replication Checkpoint <i>Blood</i> , 2004, 104, 763-763 Targeting the Protein Degradation Pathway in Multiple Myeloma with Synergistic, Selective Small Molecules <i>Blood</i> , 2005, 106, 2471-2471 Histone Deacetylase-6 (HDAC6) Modulates Akt and STAT3 Activity Via Heat Shock Protein (Hsp) 90	2.2	
12 11 10	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl 6-Oxohexanoate, 6,6-Dimethoxyhexanal, Methyl 6,6-Dimethoxyhexanoate150-150 Identification and Characterization of Novel Small-Molecule Inhibitors of the Replication Checkpoint <i>Blood</i> , 2004, 104, 763-763 Targeting the Protein Degradation Pathway in Multiple Myeloma with Synergistic, Selective Small Molecules <i>Blood</i> , 2005, 106, 2471-2471 Histone Deacetylase-6 (HDAC6) Modulates Akt and STAT3 Activity Via Heat Shock Protein (Hsp) 90 in Human Multiple Myeloma (MM) Cells <i>Blood</i> , 2006, 108, 3426-3426 Design and Characterization of a Novel, Reverse Prodrug Histone Deacetylase Inhibitor for	2.2	
12 11 10 9	Ozonolytic Cleavage of Cyclohexene to Terminally Differentiated Products: Methyl 6-Oxohexanoate, 6,6-Dimethoxyhexanal, Methyl 6,6-Dimethoxyhexanoate150-150 Identification and Characterization of Novel Small-Molecule Inhibitors of the Replication Checkpoint <i>Blood</i> , 2004, 104, 763-763 Targeting the Protein Degradation Pathway in Multiple Myeloma with Synergistic, Selective Small Molecules <i>Blood</i> , 2005, 106, 2471-2471 Histone Deacetylase-6 (HDAC6) Modulates Akt and STAT3 Activity Via Heat Shock Protein (Hsp) 90 in Human Multiple Myeloma (MM) Cells <i>Blood</i> , 2006, 108, 3426-3426 Design and Characterization of a Novel, Reverse Prodrug Histone Deacetylase Inhibitor for Cutaneous T-Cell Lymphoma <i>Blood</i> , 2006, 108, 4759-4759 Discovery and Characterization of Small Molecule Inhibitors of Autophagy for Cancer Therapy	2.2	

LIST OF PUBLICATIONS

- The GPCRITTM Receptor Target Family933-978
- 3 Systems Biology of the JAK-STAT Signaling Pathway1045-1060
- 2 Modeling Intracellular Signal Transduction Processes 1061-1081
- Genome-wide Gene Expression Analysis: Practical Considerations and Application to the Analysis of T-cell Subsets in Inflammatory Diseases1083-1117