Daniel Munro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8101410/publications.pdf

Version: 2024-02-01

1040056 1199594 13 544 9 12 citations h-index g-index papers 13 13 13 909 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Dynamic calculation of ATP/O ratios measured using Magnesium Green (MgGr)â,,¢. MethodsX, 2021, 8, 101520.	1.6	O
2	Naked mole-rat skeletal muscle mitochondria exhibit minimal functional plasticity in acute or chronic hypoxia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 255, 110596.	1.6	13
3	Burrowing star-nosed moles (<i>Condylura cristata</i>) are not hypoxia tolerant. Journal of Experimental Biology, 2021, 224, .	1.7	7
4	The effect of short-term methionine restriction on hydrogen peroxide metabolism in Fischer-344 rat skeletal muscle mitochondria. Mitochondrion, 2020, 55, 1-7.	3.4	3
5	Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell, 2019, 18, e13009.	6.7	35
6	The exceptional longevity of the naked moleâ€rat may be explained by mitochondrial antioxidant defenses. Aging Cell, 2019, 18, e12916.	6.7	67
7	Longevity or hypoxia: who's driving?. Aging, 2019, 11, 5864-5865.	3.1	3
8	A radical shift in perspective: mitochondria as regulators of reactive oxygen species. Journal of Experimental Biology, 2017, 220, 1170-1180.	1.7	171
9	The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays. Free Radical Biology and Medicine, 2016, 96, 334-346.	2.9	60
10	Age, Diet, and Season Do Not Affect Longevity-Related Differences in Peroxidation Index Between Spisula solidissima and Arctica islandica. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 434-443.	3.6	13
11	Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration. Redox Biology, 2015, 5, 216-224.	9.0	36
12	Low hydrogen peroxide production in mitochondria of the longâ€lived <i><scp>A</scp>rctica islandica</i> : underlying mechanisms for slow aging. Aging Cell, 2013, 12, 584-592.	6.7	48
13	The extreme longevity of <i>Arctica islandica</i> is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell, 2012, 11, 845-855.	6.7	88