
Kaoru Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8101275/publications.pdf Version: 2024-02-01

KAODU SATO

#	Article	IF	CITATIONS
1	Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP) mRNA. Frontiers in Aging, 2021, 2, .	2.6	5
2	Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Science Advances, 2020, 6, .	10.3	18
3	The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nature Communications, 2020, 11, 2818.	12.8	30
4	The piRNA pathway in <i>Drosophila</i> ovarian germ and somatic cells. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 32-42.	3.8	50
5	Essential roles of Windei and nuclear monoubiquitination of Eggless/ <scp>SETDB</scp> 1 in transposon silencing. EMBO Reports, 2019, 20, e48296.	4.5	34
6	Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Current Opinion in Structural Biology, 2018, 53, 69-76.	5.7	20
7	Loss of <i>l(3)mbt</i> leads to acquisition of the ping-pong cycle in <i>Drosophila</i> ovarian somatic cells. Genes and Development, 2016, 30, 1617-1622.	5.9	30
8	Tudor-domain containing proteins act to make the piRNA pathways more robust in Drosophila. Fly, 2015, 9, 86-90.	1.7	13
9	Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. Molecular Cell, 2015, 59, 553-563.	9.7	61
10	Functional and structural insights into the piRNA factor Maelstrom. FEBS Letters, 2015, 589, 1688-1693.	2.8	25
11	Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor Maelstrom. Cell Reports, 2015, 11, 366-375.	6.4	36
12	Piwi-interacting RNAs: biological functions and biogenesis. Essays in Biochemistry, 2013, 54, 39-52.	4.7	37
13	PIWI Proteins and Their Slicer Activity in piRNA Biogenesis and Transposon Silencing. The Enzymes, 2012, 32, 137-162.	1.7	1
14	Gender-Specific Hierarchy in Nuage Localization of PIWI-Interacting RNA Factors in Drosophila. Frontiers in Genetics, 2011, 2, 55.	2.3	33
15	PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews Molecular Cell Biology, 2011, 12, 246-258.	37.0	1,114
16	Maelstrom coordinates microtubule organization during <i>Drosophila</i> oogenesis through interaction with components of the MTOC. Genes and Development, 2011, 25, 2361-2373.	5.9	65
17	Is canalization more than just a beautiful idea?. Genome Biology, 2010, 11, 109.	9.6	12