Huashan Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8101269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermochemical energy storage. , 2022, , 651-683.		2
2	Compressor-assisted thermochemical sorption integrated with solar photovoltaic-thermal collector for seasonal solar thermal energy storage. Energy Conversion and Management: X, 2022, 15, 100248.	0.9	0
3	Advanced concepts. , 2021, , 569-596.		6
4	Experimental evaluation of heat transfer performance under natural and forced convection around a phase change material encapsulated in various shapes. Sustainable Energy Technologies and Assessments, 2021, 44, 101025.	1.7	5
5	Electricity-assisted thermochemical sorption system for seasonal solar energy storage. Energy Conversion and Management, 2020, 209, 112659.	4.4	21
6	Investigation of equilibrium and dynamic performance of SrCl2-expanded graphite composite in chemisorption refrigeration system. Applied Thermal Engineering, 2019, 147, 52-60.	3.0	24
7	Seasonal solar thermal energy storage using thermochemical sorption in domestic dwellings in the UK. Energy, 2019, 166, 213-222.	4.5	38
8	Performance study of solar photovoltaic-thermal collector for domestic hot water use and thermochemical sorption seasonal storage. Energy Conversion and Management, 2019, 180, 1068-1084.	4.4	39
9	Feasibility study of seasonal solar thermal energy storage in domestic dwellings in the UK. Solar Energy, 2018, 162, 489-499.	2.9	49
10	Chemisorption power generation driven by low grade heat – Theoretical analysis and comparison with pumpless ORC. Applied Energy, 2017, 186, 282-290.	5.1	22
11	An optimised chemisorption cycle for power generation using low grade heat. Applied Energy, 2017, 186, 251-261.	5.1	20
12	Principle investigation on advanced absorption power generation cycles. Energy Conversion and Management, 2017, 150, 800-813.	4.4	22
13	Thermodynamic modelling and parameter determination of ejector for ejection refrigeration systems. International Journal of Refrigeration, 2017, 75, 117-128.	1.8	23
14	Study on solidification process of sodium acetate trihydrate for seasonal solar thermal energy storage. Solar Energy Materials and Solar Cells, 2017, 172, 99-107.	3.0	53
15	A chemisorption power generation cycle with multi-stage expansion driven by low grade heat. Energy Conversion and Management, 2017, 150, 956-965.	4.4	20
16	Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery. Frontiers in Energy, 2017, 11, 503-509.	1.2	5
17	Dynamic modelling and experimental validation of scroll expander for small scale power generation system. Applied Energy, 2017, 186, 262-281.	5.1	38
18	Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation. Applied Energy, 2016, 164, 228-236.	5.1	45

Huashan Bao

#	Article	IF	CITATIONS
19	Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renewable and Sustainable Energy Reviews, 2016, 53, 1273-1302.	8.2	189
20	Performance analysis of ultralow grade waste heat upgrade using absorption heat transformer. Applied Thermal Engineering, 2016, 101, 350-361.	3.0	20
21	Process intensification and integration of solar heat generation in the Chinese condiment sector – A case study of a medium sized Beijing based factory. Energy Conversion and Management, 2015, 106, 1295-1308.	4.4	21
22	Analysis of an optimal resorption cogeneration using mass and heat recovery processes. Applied Energy, 2015, 160, 892-901.	5.1	35
23	Investigation of a Heat Pipe Heat Exchanger Integrated with a Water Spray for the Heat Recovery from Boil Exhaust Gas. Energy Procedia, 2014, 61, 2141-2144.	1.8	5
24	Modelling of a chemisorption refrigeration and power cogeneration system. Applied Energy, 2014, 119, 351-362.	5.1	54
25	Chemisorption cooling and electric power cogeneration system driven by low grade heat. Energy, 2014, 72, 590-598.	4.5	33
26	Optimisation of a Novel Resorption Cogeneration Using Mass and Heat Recovery. Energy Procedia, 2014, 61, 1103-1106.	1.8	8
27	Working pairs for resorption refrigerator. Applied Thermal Engineering, 2011, 31, 3015-3021.	3.0	23
28	A resorption refrigerator driven by low grade thermal energy. Energy Conversion and Management, 2011, 52, 2339-2344.	4.4	20
29	A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat. Renewable Energy, 2009, 34, 2373-2379.	4.3	29
30	State-of-the-Art Technologies on Low-Grade Heat Recovery and Utilization in Industry. , 0, , .		17