
Andrew Travers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8100598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization—A Timing Chain for the Bacterial Growth Cycle?. Biomolecules, 2022, 12, 831.	1.8	3
2	Michael Waring—A scientific life in DNA. Biopolymers, 2021, 112, e23408.	1.2	0
3	Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Biomolecules, 2021, 11, 924.	1.8	11
4	Chromosomal Organization and Regulation of Genetic Function in <i>Escherichia coli</i> Integrates the DNA Analog and Digital Information. EcoSal Plus, 2020, 9, .	2.1	12
5	Modelling and DNA topology of compact 2-start and 1-start chromatin fibres. Nucleic Acids Research, 2019, 47, 9902-9924.	6.5	6
6	Generation of Remosomes by the SWI/SNF Chromatin Remodeler Family. Scientific Reports, 2019, 9, 14212.	1.6	4
7	Highly disordered histone H1â^'DNA model complexes and their condensates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11964-11969.	3.3	161
8	A metastable structure for the compact 30â€nm chromatin fibre. FEBS Letters, 2016, 590, 935-942.	1.3	12
9	The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophysical Reviews, 2016, 8, 5-22.	1.5	87
10	High-resolution biophysical analysis of the dynamics of nucleosome formation. Scientific Reports, 2016, 6, 27337.	1.6	10
11	<scp>DNA</scp> structure and function. FEBS Journal, 2015, 282, 2279-2295.	2.2	151
12	Chromosomal position shift of a regulatory gene alters the bacterial phenotype. Nucleic Acids Research, 2015, 43, 8215-8226.	6.5	45
13	Upstream Binding of Idling RNA Polymerase Modulates Transcription Initiation from a Nearby Promoter. Journal of Biological Chemistry, 2015, 290, 8095-8109.	1.6	18
14	Structural Insights into the Mechanism of Negative Regulation of Single-box High Mobility Group Proteins by the Acidic Tail Domain. Journal of Biological Chemistry, 2014, 289, 29817-29826.	1.6	20
15	The 30-nm Fiber Redux. Science, 2014, 344, 370-372.	6.0	9
16	Dynamic DNA Underpins Chromosome Dynamics. Biophysical Journal, 2013, 105, 2235-2237.	0.2	5
17	DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. Molecular BioSystems, 2013, 9, 1643.	2.9	54
18	Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information. Cellular and Molecular Life Sciences, 2013, 70, 4555-4567.	2.4	26

ANDREW TRAVERS

#	Article	IF	CITATIONS
19	Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E42-50.	3.3	190
20	Coordination of genomic structure and transcription by the main bacterial nucleoidâ€associated protein HU. EMBO Reports, 2010, 11, 59-64.	2.0	102
21	The DNA Sequence-dependence of Nucleosome Positioning <i>in vivo</i> and <i>in vitro</i> . Journal of Biomolecular Structure and Dynamics, 2010, 27, 713-724.	2.0	35
22	High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Research, 2007, 35, 6330-6337.	6.5	231
23	H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nature Structural and Molecular Biology, 2007, 14, 441-448.	3.6	240
24	The Evolution of the Genetic Code Revisited. Origins of Life and Evolution of Biospheres, 2007, 36, 549-555.	0.8	19
25	RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO Journal, 2006, 25, 3784-3790.	3.5	47
26	Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Reports, 2006, 7, 710-715.	2.0	162
27	DNA Topology: Dynamic DNA Looping. Current Biology, 2006, 16, R838-R840.	1.8	5
28	DNA supercoiling — a global transcriptional regulator for enterobacterial growth?. Nature Reviews Microbiology, 2005, 3, 157-169.	13.6	286
29	DNA Dynamics: Bubble â€~n' Flip for DNA Cyclisation?. Current Biology, 2005, 15, R377-R379.	1.8	21
30	Bacterial chromatin. Current Opinion in Genetics and Development, 2005, 15, 507-514.	1.5	133
31	Mechanism of Transcriptional Activation by FIS: Role of Core Promoter Structure and DNA Topology. Journal of Molecular Biology, 2003, 331, 331-344.	2.0	59
32	Transcription factor as a topological homeostat. Frontiers in Bioscience - Landmark, 2003, 8, d279-285.	3.0	45
33	The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Molecular Microbiology, 2000, 38, 167-175.	1.2	104
34	The chromosomal protein HMG-D binds to the TAR and RBE RNA of HIV-1. FEBS Letters, 2000, 485, 47-52.	1.3	10
35	A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Molecular Microbiology, 1999, 34, 953-964.	1.2	150
36	The role of histone H1 in chromatin condensation and transcriptional repression. Genetica, 1999, 106, 117-124.	0.5	25

ANDREW TRAVERS

#	Article	IF	CITATIONS
37	DNA Bending Induced by High Mobility Group Proteins Studied by Fluorescence Resonance Energy Transferâ€. Biochemistry, 1999, 38, 12150-12158.	1.2	72
38	Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature, 1998, 395, 402-405.	13.7	205
39	DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. Journal of Molecular Biology, 1998, 279, 1027-1043.	2.0	70
40	FIS modulates growth phaseâ€dependent topological transitions of DNA in Escherichia coli. Molecular Microbiology, 1997, 26, 519-530.	1.2	124
41	DNA recognition and nucleosome organization. , 1997, 44, 423-433.		31
42	End of the line? Tramtrack and cell fate determination in Drosophila. Genes To Cells, 1996, 1, 707-716.	0.5	12
43	DNA wrapping and writhing. Nature, 1987, 327, 280-281.	13.7	67
44	DNA-binding proteins (reply). Nature, 1984, 308, 754-754.	13.7	5
45	Gene expression: Regulation by anti-sense RNA. Nature, 1984, 311, 410-410.	13.7	11
46	Gene expression: Protein contacts for promoter location in eukaryotes. Nature, 1983, 303, 755-755.	13.7	28
47	Why ppGpp?. Nature, 1980, 283, 16-16.	13.7	21
48	Mechanism of transcription termination. Nature, 1978, 272, 398-398.	13.7	1
49	RNA processing. Nature, 1978, 275, 365-365.	13.7	3
50	Selective Inhibition of tRNATyr Transcription by Guanosine 3'-Diphosphate 5'-Diphosphate. FEBS Journal, 1977, 72, 515-523.	0.2	22
51	ppGpp cycle in Escherichia coli. Molecular Genetics and Genomics, 1977, 150, 249-255.	2.4	38
52	RNA polymerase specificity and the control of growth. Nature, 1976, 263, 641-646.	13.7	134
53	Exchange of the sigma subunit of RNA polymerase. FEBS Letters, 1975, 53, 76-79.	1.3	6
54	On the Nature of DNA Promoter Conformations. The Effects of Glycerol and Dimethylsulphoxide. FEBS Journal, 1974, 47, 435-441.	0.2	38

4

ANDREW TRAVERS

#	Article	IF	CITATIONS
55	Effect of H1 protein on in vitro ribosomal RNA synthesis. FEBS Letters, 1974, 43, 86-88.	1.3	6
56	Control of Ribosomal RNA Synthesis in vitro. Nature, 1973, 244, 15-18.	13.7	149
57	Effect of DNA Conformation on Ribosomal RNA Synthesis in vitro. Nature: New Biology, 1973, 243, 161-163.	4.5	54
58	Heterogeneity of E. coli RNA Polymerase. Nature: New Biology, 1973, 243, 257-260.	4.5	41
59	Inhibition of translation initiation complex formation by MS1. FEBS Letters, 1972, 23, 163-166.	1.3	35
60	Control of Transcription in Bacteria. Nature: New Biology, 1971, 229, 69-74.	4.5	82