Juan M Coronado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8100262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced performance of CH4 dry reforming over La0.9Sr0.1FeO3/YSZ under chemical looping conditions. Fuel, 2022, 309, 122122.	3.4	20
2	The role of the surface acidic/basic centers and redox sites on TiO2 in the photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 303, 120931.	10.8	34
3	Editorial: Recent Advances in Solar-Driven Thermochemical Fuel Production and Thermal Energy Storage. Frontiers in Energy Research, 2022, 10, .	1.2	0
4	New Insight into Sorption Cycling Stability of Three Al-Based MOF Materials in Water Vapour. Nanomaterials, 2022, 12, 2092.	1.9	1
5	Assessing Cr incorporation in Mn2O3/Mn3O4 redox materials for thermochemical heat storage applications. Journal of Energy Storage, 2021, 33, 102028.	3.9	20
6	Vapor phase acylation of guaiacol with acetic acid over micro, nano and hierarchical MFI and BEA zeolites. Applied Catalysis B: Environmental, 2021, 285, 119826.	10.8	16
7	Simultaneous Photocatalytic Abatement of NO and SO2: Influence of the TiO2 Nature and Mechanistic Insights. Journal of Photocatalysis, 2021, 2, 130-139.	0.4	1
8	Impact of La doping on the thermochemical heat storage properties of CaMnO3-δ. Journal of Energy Storage, 2021, 40, 102793.	3.9	20
9	Determining the Role of Feâ€Doping on Promoting the Thermochemical Energy Storage Performance of (Mn _{1â^'} <i>_x</i> Fe <i>_x</i>) ₃ O ₄ Spinels. Small Methods, 2021, 5, e2100550.	4.6	8
10	Approaching photocatalysts characterization under real conditions: In situ and operando studies. , 2021, , 139-156.		2
11	Thermochemical heat storage at high temperature. Advances in Chemical Engineering, 2021, 58, 247-295.	0.5	8
12	Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catalysis Today, 2020, 345, 48-58.	2.2	41
13	Exploring the alternative MnO-Na2CO3 thermochemical cycle for water splitting. Journal of CO2 Utilization, 2020, 42, 101264.	3.3	9
14	Hydrotreating of Methyl Esters to Produce Green Diesel over Co- and Ni-Containing Zr-SBA-15 Catalysts. Catalysts, 2020, 10, 186.	1.6	10
15	The favourable thermodynamic properties of Fe-doped CaMnO ₃ for thermochemical heat storage. Journal of Materials Chemistry A, 2020, 8, 8503-8517.	5.2	42
16	High Temperature Chemical Reactions for Thermal Energy Storage. , 2020, , .		0
17	Transportation Biofuels via the Pyrolysis Pathway: Status and Prospects. , 2019, , 1081-1112.		0
18	Influence of Post-Synthesis Modifications of Ti1â^'xZrxO2 Nanocrystallites on Their Photocatalytic Activity for Toluene and Methylcyclohexane Degradation. Journal of Nanoscience and Nanotechnology, 2019, 19, 7810-7818.	0.9	1

#	Article	IF	CITATIONS
19	Fe-doped CaMnO3 for thermochemical heat storage application. AIP Conference Proceedings, 2019, , .	0.3	11
20	The crucial role of clay binders in the performance of ZSM-5 based materials for biomass catalytic pyrolysis. Catalysis Science and Technology, 2019, 9, 789-802.	2.1	35
21	Chemical insights on the activity of La1-xSrxFeO3 perovskites for chemical looping reforming of methane coupled with CO2-splitting. Journal of CO2 Utilization, 2019, 31, 16-26.	3.3	56
22	Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chemical Reviews, 2019, 119, 4777-4816.	23.0	335
23	Hydrotreating of Guaiacol and Acetic Acid Blends over Ni ₂ P/ZSM-5 Catalysts: Elucidating Molecular Interactions during Bio-Oil Upgrading. ACS Omega, 2019, 4, 21516-21528.	1.6	18
24	CHAPTER 4. Redox Oxides for Thermochemical Energy Storage. Inorganic Materials Series, 2019, , 136-187.	0.5	3
25	Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, 2018, 304, 30-38.	2.2	32
26	Catalytic hydrodeoxygenation of m-cresol over Ni 2 P/hierarchical ZSM-5. Catalysis Today, 2018, 304, 72-79.	2.2	63
27	Cross-reactivity of guaiacol and propionic acid blends during hydrodeoxygenation over Ni-supported catalysts. Fuel, 2018, 214, 187-195.	3.4	29
28	Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nature Communications, 2018, 9, 4986.	5.8	168
29	Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose. Green Chemistry, 2018, 20, 3499-3511.	4.6	101
30	Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. Journal of Analytical and Applied Pyrolysis, 2018, 134, 362-370.	2.6	39
31	Light and Heat Joining Forces: Methanol from Photothermal CO2 Hydrogenation. CheM, 2018, 4, 1490-1491.	5.8	20
32	Exploring the thermochemical heat storage capacity of AMn2O4 (A = Li or Cu) spinels. Solid State Ionics, 2018, 320, 316-324.	1.3	26
33	Elucidating the Photoredox Nature of Isolated Iron Active Sites on MCM-41. ACS Catalysis, 2017, 7, 1646-1654.	5.5	19
34	Advanced biofuels production by upgrading of pyrolysis bioâ€oil. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e245.	1.9	70
35	Exploring the Redox Behavior of La0.6Sr0.4Mn1â^'xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles. Topics in Catalysis, 2017, 60, 1108-1118.	1.3	26
36	Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, 2017, 7, 289-304.	2.9	67

#	Article	IF	CITATIONS
37	Bio-oil production by lignocellulose fast-pyrolysis: Isolating and comparing the effects of indigenous versus external catalysts. Fuel Processing Technology, 2017, 167, 563-574.	3.7	48
38	Thermochemical valorization of camelina straw waste via fast pyrolysis. Biomass Conversion and Biorefinery, 2017, 7, 277-287.	2.9	27
39	CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochemical and Photobiological Sciences, 2017, 16, 17-23.	1.6	76
40	Pyrolysis of microalgae for fuel production. , 2017, , 259-281.		12
41	Transportation Biofuels via the Pyrolysis Pathway: Status and Prospects. , 2017, , 1-33.		3
42	Porous Materials: Synthesis, Characterizations, and Applications. Journal of Chemistry, 2016, 2016, 1-1.	0.9	0
43	Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures. AIP Conference Proceedings, 2016, , .	0.3	13
44	Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catalysis Science and Technology, 2016, 6, 2829-2843.	2.1	82
45	Hydrogen production by methane decomposition over MnOx/YSZ catalysts. International Journal of Hydrogen Energy, 2016, 41, 19382-19389.	3.8	14
46	Factors influencing the photocatalytic activity ofÂalkali Nb Ta perovskites for hydrogen production from aqueous methanol solutions. International Journal of Hydrogen Energy, 2016, 41, 19921-19928.	3.8	11
47	Ga-Promoted Photocatalytic H2 Production over Pt/ZnO Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 23729-23738.	4.0	43
48	Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage. Journal of Physical Chemistry C, 2016, 120, 27800-27812.	1.5	57
49	Photocatalytic H2 production from aqueous methanol solutions using metal-co-catalysed Zn2SnO4 nanostructures. Applied Catalysis B: Environmental, 2016, 191, 106-115.	10.8	20
50	Revisiting the BaO ₂ /BaO redox cycle for solar thermochemical energy storage. Physical Chemistry Chemical Physics, 2016, 18, 8039-8048.	1.3	81
51	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	2.2	116
52	Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions. Applied Catalysis B: Environmental, 2016, 197, 206-213.	10.8	37
53	Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe–Cu co-doping. Journal of Energy Storage, 2016, 5, 169-176.	3.9	45
54	Role of the physicochemical properties of hausmannite on the hydrogen production via the Mn3O4–NaOH thermochemical cycle. International Journal of Hydrogen Energy, 2016, 41, 113-122.	3.8	15

#	Article	IF	CITATIONS
55	Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation. Green Chemistry, 2016, 18, 1938-1951.	4.6	109
56	Improving the Thermochemical Energy Storage Performance of the Mn ₂ O ₃ /Mn ₃ O ₄ Redox Couple by the Incorporation of Iron. ChemSusChem, 2015, 8, 1947-1954.	3.6	114
57	Mixed NaNb _x Ta _{1â^'x} O ₃ perovskites as photocatalysts for H ₂ production. Green Chemistry, 2015, 17, 1735-1743.	4.6	28
58	Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 2015, 144, 60-70.	3.4	70
59	Current Challenges of CO2 Photocatalytic Reduction Over Semiconductors Using Sunlight. , 2015, , 171-191.		7
60	Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Journal of Nanoscience and Nanotechnology, 2015, 15, 6642-6650.	0.9	12
61	Thermochemical Heat Storage at High Temperatures using Mn2O3/Mn3O4 System: Narrowing the Redox Hysteresis by Metal Co-doping. Energy Procedia, 2015, 73, 263-271.	1.8	24
62	Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties. Catalysis Today, 2015, 243, 163-172.	2.2	141
63	Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4. Applied Catalysis B: Environmental, 2015, 178, 177-185.	10.8	94
64	Thermochemical heat storage based on the Mn ₂ O ₃ /Mn ₃ O ₄ redox couple: influence of the initial particle size on the morphological evolution and cyclability. Journal of Materials Chemistry A, 2014, 2, 19435-19443.	5.2	112
65	Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Applied Catalysis B: Environmental, 2014, 145, 91-100.	10.8	192
66	Photocatalytic materials: recent achievements and near future trends. Journal of Materials Chemistry A, 2014, 2, 2863-2884.	5.2	387
67	Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones. Solar Energy Materials and Solar Cells, 2014, 123, 47-57.	3.0	137
68	Photocatalytic hydrogen production in the water/methanol system using Pt/RE:NaTaO3 (REÂ=ÂY, La, Ce,) Tj ETQ	q0.0.0 rgB	T /Qverlock 1
69	Operando DRIFTS study of the role of hydroxyls groups in trichloroethylene photo-oxidation over titanate and TiO2 nanostructures. Catalysis Today, 2013, 206, 32-39.	2.2	19
70	Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors. Chemical Engineering Journal, 2013, 224, 128-135.	6.6	63
71	H2 production by CH4 decomposition over metallic cobalt nanoparticles: Effect of the catalyst activation. Applied Catalysis A: General, 2013, 467, 371-379.	2.2	16
72	Advances in the design of ordered mesoporous materials for low-carbon catalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1, 12016.	5.2	33

#	Article	IF	CITATIONS
73	Influence of structural and morphological characteristics onÂtheÂhydrogen production and sodium recovery in the NaOH–MnO thermochemical cycle. International Journal of Hydrogen Energy, 2013, 38, 13143-13152.	3.8	17
74	Effect of copper on the performance of ZnO and ZnO1â^'xNx oxides as CO2 photoreduction catalysts. Catalysis Today, 2013, 209, 21-27.	2.2	62
75	Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15. Catalysis Today, 2013, 210, 81-88.	2.2	94
76	The Keys of Success: TiO2 as a Benchmark Photocatalyst. Green Energy and Technology, 2013, , 85-101.	0.4	6
77	Future Perspectives of Photocatalysis. Green Energy and Technology, 2013, , 345-348.	0.4	1
78	Synthesis of Nickel Phosphide Nanorods as Catalyst for the Hydrotreating of Methyl Oleate. Topics in Catalysis, 2012, 55, 991-998.	1.3	22
79	Ni ₂ P/SBA-15 As a Hydrodeoxygenation Catalyst with Enhanced Selectivity for the Conversion of Methyl Oleate Into <i>n</i> Octadecane. ACS Catalysis, 2012, 2, 592-598.	5.5	160
80	Mild temperature hydrogen production by methane decomposition over cobalt catalysts prepared with different precipitating agents. International Journal of Hydrogen Energy, 2012, 37, 7034-7041.	3.8	27
81	Co-production of graphene sheets and hydrogen by decomposition of methane using cobalt based catalysts. Energy and Environmental Science, 2011, 4, 778.	15.6	36
82	Revisiting the hydrothermal synthesis of titanate nanotubes: new insights on the key factors affecting the morphology. Nanoscale, 2011, 3, 2233.	2.8	31
83	Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films. Applied Catalysis B: Environmental, 2011, 108-109, 14-21.	10.8	38
84	Highly selective one-dimensional TiO2-based nanostructures for air treatment applications. Applied Catalysis B: Environmental, 2011, 110, 251-259.	10.8	15
85	Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2–ZrO2 thin films: Influence of the aromaticity of the target molecule on deactivation. Applied Catalysis B: Environmental, 2011, 101, 283-293.	10.8	148
86	Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental, 2011, 103, 294-301.	10.8	268
87	Cobalt based catalysts prepared by Pechini method for CO2-free hydrogen production by methane decomposition. International Journal of Hydrogen Energy, 2010, 35, 10285-10294.	3.8	68
88	Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in a pilot plant. Catalysis Today, 2010, 151, 107-113.	2.2	138
89	Photocatalytic-based strategies for H2S elimination. Catalysis Today, 2010, 151, 64-70.	2.2	61
90	Waterâ^'Hydroxyl Interactions on Small Anatase Nanoparticles Prepared by the Hydrothermal Route. Journal of Physical Chemistry C, 2010, 114, 16534-16540.	1.5	54

#	Article	IF	CITATIONS
91	Hybrid TiO ₂ â^'SiMgO _{<i>X</i>} Composite for Combined Chemisorption and Photocatalytic Elimination of Gaseous H ₂ S. Industrial & Engineering Chemistry Research, 2010, 49, 6685-6690.	1.8	23
92	Synthesis of Ti1â~'Sn O2 nanosized photocatalysts in reverse microemulsions. Catalysis Today, 2009, 143, 230-236.	2.2	29
93	Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catalysis Today, 2009, 144, 124-130.	2.2	126
94	Hybrid photocatalysts for the degradation of trichloroethylene in air. Catalysis Today, 2009, 143, 302-308.	2.2	38
95	Operando FTIR study of the photocatalytic oxidation of acetone in air over TiO2–ZrO2 thin films. Catalysis Today, 2009, 143, 364-373.	2.2	55
96	Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol–gel. Applied Catalysis B: Environmental, 2009, 86, 1-7.	10.8	174
97	Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy and Environmental Science, 2009, 2, 1231.	15.6	1,150
98	Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M=Sn or Zr) nanocrystalline oxides: Influence of the heteroatom distribution on deactivation. Applied Catalysis B: Environmental, 2008, 84, 598-606.	10.8	66
99	H2S photodegradation by TiO2/M-MCM-41 (M=Cr or Ce): Deactivation and by-product generation under UV-A and visible light. Applied Catalysis B: Environmental, 2008, 84, 643-650.	10.8	53
100	On the Preparation of TiO ₂ â^'Sepiolite Hybrid Materials for the Photocatalytic Degradation of TCE: Influence of TiO ₂ Distribution in the Mineralization. Environmental Science & Technology, 2008, 42, 5892-5896.	4.6	66
101	Influence of Catalyst Properties and Reactor Configuration on the Photocatalytic Degradation of Trichloroethylene Under Sunlight Irradiation. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.1	8
102	Solar Photocatalysis for the Elimination of Trichloroethylene in the Gas Phase. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.1	5
103	Tubular-Shaped Nanocarbons Prepared from Polyaniline Synthesized by a Self-Assembly Process and Their Electrical Conductivity. Journal of Nanoscience and Nanotechnology, 2008, 8, 1999-2004.	0.9	21
104	Preparation of Photocatalytic Coatings Adapted to the Elimination of Airborne Pollutants: Influence of the Substrate on the Degradation Efficiency. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	1
105	Photocatalytic Oxidation of H2S on TiO2 and TiO2-ZrO2 Thin Films. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	0
106	FTIR and NMR Study of the Adsorbed Water on Nanocrystalline Anatase. Journal of Physical Chemistry C, 2007, 111, 10590-10596.	1.5	94
107	Influence of Structural and Surface Characteristics of Ti1-xZrxO2 Nanoparticles on the Photocatalytic Degradation of Methylcyclohexane in the Gas Phase. Chemistry of Materials, 2007, 19, 4283-4291.	3.2	61
108	ESR study of the initial stages of the photocatalytic oxidation of toluene over TiO2 powders. Catalysis Today, 2007, 123, 37-41.	2.2	73

#	Article	IF	CITATIONS
109	Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal. Catalysis Today, 2007, 129, 223-230.	2.2	73
110	EPR and kinetic investigation of free cyanide oxidation by photocatalysis and ozonation. Research on Chemical Intermediates, 2007, 33, 205-224.	1.3	16
111	Magnetic resonance study of the defects influence on the surface characteristics of nanosize anatase. Catalysis Today, 2007, 129, 240-246.	2.2	36
112	Influence of Sn4+on the structural and electronic properties of Ti1â^'xSnxO2nanoparticles used as photocatalysts. Physical Chemistry Chemical Physics, 2006, 8, 2421-2430.	1.3	42
113	Photochemical and photocatalytic degradation of salicylic acid with hydrogen peroxide over TiO2/SiO2 fibres. Applied Catalysis A: General, 2006, 303, 199-206.	2.2	50
114	Sol–gel preparation of TiO2–ZrO2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity. Thin Solid Films, 2006, 502, 125-131.	0.8	79
115	Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase. Applied Catalysis B: Environmental, 2006, 66, 295-301.	10.8	81
116	Triphenyltin hydroxide as a precursor for the synthesis of nanosized tin-doped TiO2 photocatalysts. Applied Organometallic Chemistry, 2006, 20, 220-225.	1.7	22
117	Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 13-20.	2.0	55
118	Influence of the structural characteristics of Ti1â``xSnxO2 nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors. Applied Catalysis B: Environmental, 2005, 55, 159-167.	10.8	81
119	Photocatalytic Inactivation of Legionella Pneumophila and an Aerobic Bacteria Consortium in Water over TiO2/SiO2 Fibres in a Continuous Reactor. Topics in Catalysis, 2005, 35, 279-286.	1.3	20
120	TRMC, XPS, and EPR Characterizations of Polycrystalline TiO2 Porphyrin Impregnated Powders and Their Catalytic Activity for 4-Nitrophenol Photodegradation in Aqueous Suspension. Journal of Physical Chemistry B, 2005, 109, 12347-12352.	1.2	87
121	EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Applied Catalysis B: Environmental, 2004, 50, 167-175.	10.8	128
122	Thin-film transmission IR spectroscopy as an in situ probe of the gas–solid interface in photocatalytic processes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 323-329.	2.0	23
123	Nature of the vanadia?ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 2004, 225, 240-248.	3.1	143
124	Confinement effects in quasi-stoichiometric CeO2nanoparticles. Physical Chemistry Chemical Physics, 2004, 6, 3524-3529.	1.3	95
125	Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor. Applied Catalysis B: Environmental, 2003, 43, 329-344.	10.8	108
126	Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors. Applied Catalysis B: Environmental, 2003, 46, 497-509.	10.8	94

#	Article	IF	CITATIONS
127	The influence of surface properties on the photocatalytic activity ofÂnanostructured TiO2. Journal of Catalysis, 2003, 219, 107-116.	3.1	142
128	Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species. Journal of Catalysis, 2003, 219, 219-230.	3.1	208
129	Study of the effect of hydrogen on Pt supported Nanoporous Carbon derived from Polyfurfuryl alcohol. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	0
130	Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Applied Catalysis B: Environmental, 2002, 39, 257-267.	10.8	105
131	EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 150, 213-221.	2.0	127
132	EPR Study of the Surface Characteristics of Nanostructured TiO2under UV Irradiation. Langmuir, 2001, 17, 5368-5374.	1.6	255
133	Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. Journal of Catalysis, 2001, 202, 413-420.	3.1	317
134	EPR Study of CO and O2 Interaction with Supported Au Catalysts. Journal of Catalysis, 2001, 203, 168-174.	3.1	119
135	Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Applied Catalysis B: Environmental, 2001, 29, 327-336.	10.8	217
136	Styrene hydroformylation over modified Rh/SiO2·Al2O3 catalysts. Journal of Molecular Catalysis A, 2000, 154, 143-154.	4.8	21
137	Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. Journal of Catalysis, 2000, 195, 207-216.	3.1	357
138	FTIR study of the interaction of NO2 and propene with Pt/BaCl2/SiO2. Journal of Molecular Catalysis A, 1999, 138, 83-96.	4.8	53
139	Influence of Ceria on Pd Activity for the CO+O2 Reaction. Journal of Catalysis, 1999, 187, 474-485.	3.1	151
140	Infrared study of crotonaldehyde and CO adsorption on a Pt/TiO2 catalyst. Catalysis Letters, 1998, 51, 155-162.	1.4	43
141	Influence of Mutual Platinum-Dispersed Ceria Interactions on the Promoting Effect of Ceria for the CO Oxidation Reaction in a Pt/CeO2/Al2O3 Catalyst. Journal of Physical Chemistry B, 1998, 102, 4357-4365.	1.2	79
142	Spectroscopic study of oxygen adsorption on CeO2/γ-Al2O3catalyst supports. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1619-1626.	1.7	59
143	Electron paramagnetic resonance spectroscopy study of the adsorption of O2 and CO on a Pt/CeO2/Al2O3 catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 115, 215-221.	2.3	18
144	Effect of the CeO2 dispersion on alumina on its reactivity for co and no conversion. Studies in Surface Science and Catalysis, 1995, , 215-227.	1.5	8

#	Article	IF	CITATIONS
145	Structural change and magnetic properties of Y2BaNi1â^'xZnxO5 oxides. Journal of Solid State Chemistry, 1991, 93, 461-468.	1.4	44