Miren J Azkoiti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8100098/publications.pdf Version: 2024-02-01

MIDEN LAZKOITI

#	Article	IF	CITATIONS
1	Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. International Journal of Hydrogen Energy, 2014, 39, 12586-12596.	3.8	175
2	Reaction pathway for ethanol steam reforming on a Ni/SiO 2 catalyst including coke formation. International Journal of Hydrogen Energy, 2014, 39, 18820-18834.	3.8	131
3	Transformation of Several Plastic Wastes into Fuels by Catalytic Cracking. Industrial & Engineering Chemistry Research, 1997, 36, 4523-4529.	1.8	100
4	Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. Journal of Industrial and Engineering Chemistry, 2019, 78, 372-382.	2.9	64
5	Effect of HZSM-5 Zeolite Addition to a Fluid Catalytic Cracking Catalyst. Study in a Laboratory Reactor Operating under Industrial Conditions. Industrial & Engineering Chemistry Research, 2000, 39, 1917-1924.	1.8	63
6	Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. Journal of Analytical and Applied Pyrolysis, 2003, 70, 747-760.	2.6	47
7	Causes of deactivation of bifunctional catalysts made up of CuO-ZnO-Al2O3 and desilicated HZSM-5 zeolite in DME steam reforming. Applied Catalysis A: General, 2014, 483, 76-84.	2.2	44
8	Enhanced production of phenolics and aromatics from raw bio-oil using HZSM-5 zeolite additives for PtPd/C and NiW/C catalysts. Applied Catalysis B: Environmental, 2019, 259, 118112.	10.8	40
9	Modelling FCC units under steady and unsteady state conditions. Canadian Journal of Chemical Engineering, 2000, 78, 111-123.	0.9	39
10	Effect of catalyst properties on the cracking of polypropylene pyrolysis waxes under FCC conditions. Catalysis Today, 2008, 133-135, 413-419.	2.2	39
11	Effect of HZSM-5 catalyst addition on the cracking of polyolefin pyrolysis waxes under FCC conditions. Chemical Engineering Journal, 2007, 132, 17-26.	6.6	32
12	HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. Energy & Fuels, 2009, 23, 4215-4223.	2.5	32
13	Effect of Atmospheric Residue Incorporation in the Fluidized Catalytic Cracking (FCC) Feed on Product Stream Yields and Composition. Energy & Fuels, 2008, 22, 2149-2156.	2.5	31
14	Kinetic Modeling of the Hydrotreating and Hydrocracking Stages for Upgrading Scrap Tires Pyrolysis Oil (STPO) toward High-Quality Fuels. Energy & Fuels, 2015, 29, 7542-7553.	2.5	27
15	Cracking of Scrap Tires Pyrolysis Oil in a Fluidized Bed Reactor under Catalytic Cracking Unit Conditions. Effects of Operating Conditions. Energy & Fuels, 2019, 33, 3133-3143.	2.5	27
16	Co-cracking of high-density polyethylene (HDPE) and vacuum gasoil (VGO) under refinery conditions. Chemical Engineering Journal, 2020, 382, 122602.	6.6	20
17	Valorization by thermal cracking over silica of polyolefins dissolved in LCO. Fuel Processing Technology, 2004, 85, 125-140.	3.7	19
18	Cracking of Coker Naphtha with Gasâ^'Oil. Effect of HZSM-5 Zeolite Addition to the Catalyst. Energy & amp; Fuels, 2007, 21, 11-18.	2.5	16

Miren J Azkoiti

#	Article	IF	CITATIONS
19	Modelling product distribution of pyrolysis gasoline hydroprocessing on a Pt–Pd/HZSM-5 catalyst. Chemical Engineering Journal, 2011, 176-177, 302-311.	6.6	11
20	Catalytic Cracking of Plastic Pyrolysis Waxes with Vacuum Gasoil: Effect of HZSM-5 Zeolite in the FCC Catalyst. International Journal of Chemical Reactor Engineering, 2006, 4, .	0.6	8
21	Simulation of isothermal catalytic fixed-bed reactors operated in successive reaction-regeneration cycles. The Chemical Engineering Journal, 1985, 31, 137-144.	0.4	6
22	Consistency of the ten-lump kinetic model for cracking: Study in a laboratory reactor and use for simulation of an FCCU. Chemical Engineering Communications, 2003, 190, 254-284.	1.5	5