Colin J Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8099215/publications.pdf

Version: 2024-02-01

361413 1,179 44 20 citations h-index papers

g-index 46 46 46 2138 docs citations times ranked citing authors all docs

377865

34

#	Article	IF	CITATIONS
1	Noninvasive Detection of Ischemic Vascular Damage in a Pig Model of Liver Donation After Circulatory Death. Hepatology, 2021, 74, 428-443.	7.3	7
2	REPLY:. Hepatology, 2021, 74, 2310-2311.	7.3	0
3	A SERS-Active Electrospun Polymer Mesh for Spatially Localized pH Measurements of the Cellular Microenvironment. Analytical Chemistry, 2021, 93, 13844-13851.	6.5	8
4	Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51504-51518.	8.0	50
5	Automatic Cocrystal Detection by Raman Spectral Deconvolution-Based Novelty Analysis. Analytical Chemistry, 2021, 93, 14375-14382.	6.5	2
6	Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors. Journal of Cystic Fibrosis, 2020, 19, 203-210.	0.7	21
7	Untargeted Metabolite Mapping in 3D Cell Culture Models Using High Spectral Resolution FT-ICR Mass Spectrometry Imaging. Analytical Chemistry, 2019, 91, 9522-9529.	6.5	28
8	Intracellular redox potential is correlated with miRNA expression in MCF7 cells under hypoxic conditions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19753-19759.	7.1	11
9	Developing Novel Fibres for Endoscopic Imaging and Sensing. , 2019, , .		О
10	Ultraâ€low background Raman sensing using a negativeâ€eurvature fibre and no distal optics. Journal of Biophotonics, 2019, 12, e201800239.	2.3	15
11	Raman spectroscopy investigation of biochemical changes in tumor spheroids with aging and after treatment with staurosporine. Journal of Biophotonics, 2019, 12, e201800201.	2.3	6
12	Dual purpose fibre – SERS pH sensing and bacterial analysis. Analyst, The, 2018, 143, 5918-5925.	3.5	7
13	MALDI Matrix Application Utilizing a Modified 3D Printer for Accessible High Resolution Mass Spectrometry Imaging. Analytical Chemistry, 2018, 90, 8742-8749.	6.5	27
14	Raman spectroscopy and regenerative medicine: a review. Npj Regenerative Medicine, 2017, 2, 12.	5.2	147
15	SERS as a tool for in vitro toxicology. Faraday Discussions, 2016, 187, 501-520.	3.2	7
16	Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. British Journal of Cancer, 2016, 114, 905-916.	6.4	42
17	Targeted SERS nanosensors measure physicochemical gradients and free energy changes in live 3D tumor spheroids. Nanoscale, 2016, 8, 16710-16718.	5.6	23
18	Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors. Analyst, The, 2016, 141, 5056-5061.	3.5	14

#	Article	IF	Citations
19	Label- and amplification-free electrochemical detection of bacterial ribosomal RNA. Biosensors and Bioelectronics, 2016, 81, 487-494.	10.1	42
20	Determination of Protein Thiol Reduction Potential by Isotope Labeling and Intact Mass Measurement. Analytical Chemistry, 2016, 88, 2727-2733.	6.5	5
21	Series of Quinone-Containing Nanosensors for Biologically Relevant Redox Potential Determination by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2015, 87, 4719-4725.	6.5	21
22	Chemical analysis of multicellular tumour spheroids. Analyst, The, 2015, 140, 3910-3920.	3.5	41
23	Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors. Analyst, The, 2015, 140, 2330-2335.	3.5	62
24	SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α. Analyst, The, 2015, 140, 2321-2329.	3.5	72
25	Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology, 2014, 8, 824-832.	3.0	59
26	Ratiometric biological nanosensors. Biochemical Society Transactions, 2014, 42, 899-904.	3.4	7
27	Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors. Nanoscale, 2014, 6, 12104-12110.	5.6	67
28	Nanosensors for Intracellular Raman Studies. Lecture Notes in Nanoscale Science and Technology, 2013, , 35-54.	0.8	4
29	Monitoring Intracellular Redox Potential Changes Using SERS Nanosensors. ACS Nano, 2012, 6, 888-896.	14.6	90
30	Cellular redox potential and the biomolecular electrochemical series: A systems hypothesis. Free Radical Biology and Medicine, 2012, 53, 280-288.	2.9	38
31	Redox Potential Dependence of Peptide Structure Studied Using Surface Enhanced Raman Spectroscopy. Nano Letters, 2011, 11, 2684-2688.	9.1	7
32	Fast DNA and protein microarray tests for the diagnosis of hepatitis C virus infection on a single platform. Analytical and Bioanalytical Chemistry, 2011, 401, 2549-2559.	3.7	11
33	Peptide-tags for enhanced DNA microarray performance. Faraday Discussions, 2011, 149, 201-210.	3.2	6
34	10.1063/1.3604395.1., 2011,,.		1
35	Base pair mismatch identification with DNA nanoswitch and long lifetime acridine fluorophore. Sensors and Actuators B: Chemical, 2010, 148, 342-346.	7.8	4
36	Systematic analysis of the IgG antibody immune response against varicella zoster virus (VZV) using a self-assembled protein microarray. Molecular BioSystems, 2010, 6, 1604.	2.9	44

#	Article	lF	CITATIONS
37	Nanoshells for Surface-Enhanced Raman Spectroscopy in Eukaryotic Cells: Cellular Response and Sensor Development. ACS Nano, 2009, 3, 3613-3621.	14.6	97
38	Bait-and-Switch Molecular Recognition in Nucleic Acid Sensors: Time-Resolved Fluorescence, Single Nucleotide Polymorphism Detection., 2009,,.		1
39	A DNA nanoswitch incorporating the fluorescent base analogue 2-aminopurine detects single nucleotide mismatches in unlabelled targets. Analyst, The, 2009, 134, 1873.	3.5	3
40	A multiplexed protein microarray for the simultaneous serodiagnosis of human immunodeficiency virus/hepatitis C virus infection and typing of whole blood. Analytical Biochemistry, 2008, 382, 9-15.	2.4	21
41	Evaluation of a Protein Microarray Method for Immunoâ€√yping Erythrocytes in Whole Blood. Journal of Immunoassay and Immunochemistry, 2008, 29, 197-209.	1.1	3
42	DNA Nanoswitch as a Biosensor. Analytical Chemistry, 2007, 79, 4724-4728.	6.5	22
43	Protein technologies. Current Opinion in Biotechnology, 2007, 18, 293-294.	6.6	3
44	Cell Interaction Microarray for Blood Phenotyping. Analytical Chemistry, 2006, 78, 1930-1938.	6.5	33