List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809898/publications.pdf Version: 2024-02-01

218677 302126 3,304 108 26 39 citations h-index g-index papers 113 113 113 4647 docs citations times ranked citing authors all docs

LEE-WELLIM

#	Article	IF	CITATIONS
1	Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology, 2022, 239, 663-693.	3.1	42
2	Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals, 2022, 15, 101.	3.8	10
3	Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Frontiers in Neuroendocrinology, 2022, 65, 100986.	5.2	22
4	How have COVIDâ€19 stringency measures changed scholarly activity?. Annals of the New York Academy of Sciences, 2022, , .	3.8	1
5	Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells, 2022, 11, 1036.	4.1	4
6	Eyeblink rate, a putative dopamine marker, predicts negative reinforcement learning by tDCS of the dIPFC. Brain Stimulation, 2022, 15, 533-535.	1.6	6
7	Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Research Reviews, 2022, 78, 101622.	10.9	39
8	Altered synaptic plasticity of the longitudinal dentate gyrus network in noise-induced anxiety. IScience, 2022, 25, 104364.	4.1	8
9	Antidepressant-like effects of transcorneal electrical stimulation in rat models. Brain Stimulation, 2022, 15, 843-856.	1.6	11
10	Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Annals of the New York Academy of Sciences, 2022, 1515, 249-265.	3.8	8
11	Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals, 2022, 15, 764.	3.8	6
12	Neuromodulation and hippocampal neurogenesis in depression: A scoping review. Brain Research Bulletin, 2022, 188, 92-107.	3.0	8
13	New insights on brainâ€derived neurotrophic factor epigenetics: from depression to memory extinction. Annals of the New York Academy of Sciences, 2021, 1484, 9-31.	3.8	24
14	GABA Supplementation Negatively Affects Cognitive Flexibility Independent of Tyrosine. Journal of Clinical Medicine, 2021, 10, 1807.	2.4	7
15	Prelimbic cortical stimulation disrupts fear memory consolidation through ventral hippocampal dopamine D 2 receptors. British Journal of Pharmacology, 2021, 178, 3587-3601.	5.4	8
16	Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer's disease neuropathology. Ageing Research Reviews, 2021, 67, 101304.	10.9	30
17	TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells, 2021, 10, 1382.	4.1	32
18	Regulation of Melatonin and Neurotransmission in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 6841.	4.1	27

#	Article	IF	CITATIONS
19	Development of a tool to accurately predict UK REF funding allocation. Scientometrics, 2021, 126, 8049-8062.	3.0	3
20	Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells, 2021, 10, 2194.	4.1	8
21	Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Research Reviews, 2021, 70, 101417.	10.9	43
22	Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 10151.	4.1	17
23	Neuroprotective Effects and Therapeutic Potential of Transcorneal Electrical Stimulation for Depression. Cells, 2021, 10, 2492.	4.1	8
24	ASD-like behaviors, a dysregulated inflammatory response and decreased expression of PLP1 characterize mice deficient for sialyltransferase ST3GAL5. Brain, Behavior, & Immunity - Health, 2021, 16, 100306.	2.5	9
25	An existentialist approach to authentic science. IBRO Neuroscience Reports, 2021, 11, 52-55.	1.6	1
26	Therapeutic roles of natural remedies in combating hereditary ataxia: A systematic review. Chinese Medicine, 2021, 16, 15.	4.0	12
27	Interdisciplinary Research in Alzheimer's Disease and the Roles International Societies Can Play. , 2021, 12, 36.		10
28	Functional Roles of Neuronal Nitric Oxide Synthase in Neurodegenerative Diseases and Mood Disorders. Current Alzheimer Research, 2021, 18, .	1.4	4
29	Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Research, 2021, 31, 1244-1262.	12.0	81
30	Sex-Specific ADHD-like Behaviour, Altered Metabolic Functions, and Altered EEG Activity in Sialyltransferase ST3GAL5-Deficient Mice. Biomolecules, 2021, 11, 1759.	4.0	4
31	A Brief Comparative Look at Experimental Memory Editing Techniques for Cognitive Dysfunction. Current Alzheimer Research, 2021, 18, 841-848.	1.4	3
32	Neurogenesis-dependent antidepressant-like activity of Hericium erinaceus in an animal model of depression. Chinese Medicine, 2021, 16, 132.	4.0	22
33	Marine algae as emerging therapeutic alternatives for depression: A review. Iranian Journal of Basic Medical Sciences, 2021, 24, 997-1013.	1.0	4
34	Tyrosine negatively affects flexible-like behaviour under cognitively demanding conditions. Journal of Affective Disorders, 2020, 260, 329-333.	4.1	6
35	Dopamine depletion effects on cognitive flexibility as modulated by tDCS of the dlPFC. Brain Stimulation, 2020, 13, 105-108.	1.6	32
36	Memory and neuromodulation: A perspective of DNA methylation. Neuroscience and Biobehavioral Reviews, 2020, 111, 57-68.	6.1	15

#	Article	IF	CITATIONS
37	Therapeutic Potential of Hericium erinaceus for Depressive Disorder. International Journal of Molecular Sciences, 2020, 21, 163.	4.1	69
38	Neuroprotective effects of Hericium erinaceus (Bull.: Fr.) Pers. against high-dose corticosterone-induced oxidative stress in PC-12 cells. BMC Complementary Medicine and Therapies, 2020, 20, 340.	2.7	26
39	Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neuroscience and Biobehavioral Reviews, 2020, 118, 384-396.	6.1	17
40	Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Annals of the New York Academy of Sciences, 2020, 1478, 43-62.	3.8	25
41	A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. Journal of Clinical Medicine, 2020, 9, 3260.	2.4	11
42	Hericium erinaceus potentially rescues behavioural motor deficits through ERK-CREB-PSD95 neuroprotective mechanisms in rat model of 3-acetylpyridine-induced cerebellar ataxia. Scientific Reports, 2020, 10, 14945.	3.3	17
43	A practical approach to the ethical use of memory modulating technologies. BMC Medical Ethics, 2020, 21, 89.	2.4	8
44	Prelimbic Cortical Stimulation Improves Spatial Memory Through Distinct Patterns of Hippocampal Gene Expression in Aged Rats. Neurotherapeutics, 2020, 17, 2054-2068.	4.4	10
45	Dropout in Neural Networks Simulates the Paradoxical Effects of Deep Brain Stimulation on Memory. Frontiers in Aging Neuroscience, 2020, 12, 273.	3.4	6
46	DNA methylation in the pathology of Alzheimer's disease: from gene to cognition. Annals of the New York Academy of Sciences, 2020, 1475, 15-33.	3.8	28
47	Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. , 2020, 11, 216.		921
48	Serotonergic treatment normalizes midbrain dopaminergic neuron increase after periaqueductal gray stimulation. Brain Structure and Function, 2020, 225, 1957-1966.	2.3	4
49	Behavioural responses of anxiety in aversive and non-aversive conditions between young and aged Sprague-Dawley rats. Behavioural Brain Research, 2020, 385, 112559.	2.2	6
50	TTC9A deficiency induces estradiol-mediated changes in hippocampus and amygdala neuroplasticity-related gene expressions in female mice. Brain Research Bulletin, 2020, 157, 162-168.	3.0	5
51	The Paradoxical Effect of Deep Brain Stimulation on Memory. , 2020, 11, 179.		14
52	Rodent Models of Amyloid-Beta Feature of Alzheimer's Disease: Development and Potential Treatment Implications. , 2020, 11, 1235.		30
53	Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. , 2020, 11, 1291.		64
54	Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich's ataxia patient. Food Science and Technology, 2020, 40, 264-272.	1.7	20

#	Article	IF	CITATIONS
55	Discovering the Potentials of Medicinal Mushrooms in Combating Depression – A Review. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1518-1531.	2.4	7
56	Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague-Dawley rat brain. Acta Histochemica, 2019, 121, 151437.	1.8	13
57	Small molecules enhance neurogenic differentiation of dental-derived adult stem cells. Archives of Oral Biology, 2019, 102, 26-38.	1.8	24
58	Human Embryonic Stem Cell-Derived Neural Lineages as <i> In Vitro</i> Models for Screening the Neuroprotective Properties of <i> Lignosus rhinocerus</i> (Cooke) Ryvarden. BioMed Research International, 2019, 2019, 1-19.	1.9	6
59	Catecholaminergic modulation of indices of cognitive flexibility: AÂpharmaco-tDCS study. Brain Stimulation, 2019, 12, 290-295.	1.6	17
60	Eternal sunshine of the neuromodulated mind: Altering fear memories through neuromodulation. Experimental Neurology, 2019, 314, 9-19.	4.1	17
61	Enriched Environment Facilitates Anxiolytic Efficacy Driven by Deep-Brain Stimulation of Medial Prefrontal Cortex. Frontiers in Behavioral Neuroscience, 2018, 12, 204.	2.0	8
62	EphrinB2 signalling modulates the neural differentiation of human dental pulp stem cells. Biomedical Reports, 2018, 9, 161-168.	2.0	6
63	Decellularized Matrix Derived from Neural Differentiation of Embryonic Stem Cells Enhances the Neurogenic Potential of Dental Follicle Stem Cells. Journal of Endodontics, 2017, 43, 409-416.	3.1	14
64	Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6972-E6981.	7.1	80
65	Electrical Stimulation Normalizes c-Fos Expression in the Deep Cerebellar Nuclei of Depressive-like Rats: Implication of Antidepressant Activity. Cerebellum, 2017, 16, 398-410.	2.5	18
66	Tetratricopeptide repeat domain 9A modulates anxiety-like behavior in female mice. Scientific Reports, 2016, 6, 37568.	3.3	14
67	Pluripotent Human embryonic stem cell derived neural lineages for in vitro modelling of enterovirus 71 infectionÂand therapy. Virology Journal, 2016, 13, 5.	3.4	7
68	An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells <i>In Vitro</i> . Tissue Engineering - Part B: Reviews, 2016, 22, 220-250.	4.8	49
69	Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and <i>In Vitro</i> Disease Modeling. Stem Cells International, 2015, 2015, 1-11.	2.5	28
70	Infection of male rats with <i>Toxoplasma gondii</i> results in enhanced delay aversion and neural changes in the nucleus accumbens core. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150042.	2.6	22
71	Behavioral effects of deep brain stimulation of different areas of the Papez circuit on memory- and anxiety-related functions. Behavioural Brain Research, 2015, 292, 353-360.	2.2	28
72	Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Translational Psychiatry, 2015, 5, e535-e535.	4.8	97

#	Article	IF	CITATIONS
73	The antidepressant effects of ventromedial prefrontal cortex stimulation is associated with neural activation in the medial part of the subthalamic nucleus. Behavioural Brain Research, 2015, 279, 17-21.	2.2	28
74	Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. ELife, 2015, 4, .	6.0	59
75	Acute serotonergic treatment changes the relation between anxiety and HPA-axis functioning and periaqueductal gray activation. Behavioural Brain Research, 2014, 273, 155-165.	2.2	21
76	Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology. Experimental Neurology, 2014, 254, 29-40.	4.1	14
77	Deep brain stimulation in dementia-related disorders. Neuroscience and Biobehavioral Reviews, 2013, 37, 2666-2675.	6.1	65
78	Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: The role of stimulation parameters. Brain Stimulation, 2013, 6, 72-77.	1.6	91
79	Neuromodulation in Psychiatric Disorders. International Review of Neurobiology, 2012, 107, 283-314.	2.0	30
80	Motor and non-motor behaviour in experimental Huntington's disease. Behavioural Brain Research, 2012, 226, 435-439.	2.2	32
81	Deactivation of the parvalbumin-positive interneurons in the hippocampus after fear-like behaviour following electrical stimulation of the dorsolateral periaqueductal gray of rats. Behavioural Brain Research, 2012, 233, 322-325.	2.2	13
82	Neurosurgical Treatments of Depression. Current Topics in Behavioral Neurosciences, 2012, 14, 327-339.	1.7	12
83	c-Fos expression in the deep cerebellar nuclei in a rat model of conditioned fear. Journal of Experimental and Clinical Medicine (Turkey), 2012, 29, 201-207.	0.2	2
84	Electrical Brain Stimulation in Depression: Which Target(s)?. Biological Psychiatry, 2011, 69, e5-e6.	1.3	10
85	Increased plasma corticosterone levels after periaqueductal gray stimulation-induced escape reaction or panic attacks in rats. Behavioural Brain Research, 2011, 218, 301-307.	2.2	24
86	Close communication between the subependymal serotonergic plexus and the neurogenic subventricular zone. Journal of Chemical Neuroanatomy, 2011, 42, 297-303.	2.1	10
87	High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions. Journal of Psychiatric Research, 2011, 45, 1307-1315.	3.1	34
88	High-frequency stimulation of the ventrolateral thalamus regulates gene expression in hippocampus, motor cortex and caudate–putamen. Brain Research, 2011, 1391, 1-13.	2.2	16
89	Periaqueductal Grey Stimulation Induced Panic-Like Behaviour Is Accompanied by Deactivation of the Deep Cerebellar Nuclei. Cerebellum, 2011, 10, 61-69.	2.5	20
90	Hyperdopaminergic Status in Experimental Huntington Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 910-917.	1.7	38

#	Article	IF	CITATIONS
91	Experimental Deep Brain Stimulation in Animal Models. Neurosurgery, 2010, 67, 1073-1080.	1.1	61
92	Neurostimulatory and ablative treatment options in major depressive disorder: a systematic review. Acta Neurochirurgica, 2010, 152, 565-577.	1.7	50
93	Buspirone-induced changes in the serotonergic and non-serotonergic cells in the dorsal raphe nucleus of rats. Neuroscience Letters, 2010, 473, 136-140.	2.1	13
94	Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. Experimental Neurology, 2010, 225, 302-309.	4.1	63
95	Attenuation of fear-like response by escitalopram treatment after electrical stimulation of the midbrain dorsolateral periaqueductal gray. Experimental Neurology, 2010, 226, 293-300.	4.1	19
96	Cognitive and limbic effects of deep brain stimulation in preclinical studies. Frontiers in Bioscience - Landmark, 2009, Volume, 1891.	3.0	26
97	Germinal Matrix Hemorrhage of Prematurity: Treatment Approaches and Outcomes in a Single Institutional Review in the Ukraine. Pediatric Neurosurgery, 2009, 45, 132-140.	0.7	5
98	Cerebellar nuclei are involved in impulsive behaviour. Behavioural Brain Research, 2009, 203, 256-263.	2.2	34
99	Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter. Journal of Chemical Neuroanatomy, 2009, 38, 83-96.	2.1	21
100	The Periaqueductal Gray: From Longitudinal columns to defensive behaviour. Journal of Experimental and Clinical Medicine (Turkey), 2009, 26, 01-26.	0.2	2
101	Basal Ganglia and Behaviour: Behavioural Effects of Deep Brain Stimulation in Experimental Neurological and Psychiatric Disorders. Advances in Behavioral Biology, 2009, , 471-482.	0.2	1
102	High frequency stimulation of the ventrolateral and mediodorsal thalamic nuclei: differential effects on impulsive action. Journal of Experimental and Clinical Medicine (Turkey), 2009, 26, 27-34.	0.2	0
103	Increased electrical and metabolic activity in the dorsal raphe nucleus of Parkinsonian rats. Brain Research, 2008, 1221, 93-97.	2.2	32
104	Buspirone induced acute and chronic changes of neural activation in the periaqueductal gray of rats. Neuroscience, 2008, 155, 164-173.	2.3	19
105	Deep brain stimulation of the nucleus accumbens core and shell: Opposite effects on impulsive action. Experimental Neurology, 2008, 214, 135-139.	4.1	59
106	High-frequency stimulation of the dorsolateral periaqueductal gray and ventromedial hypothalamus fails to inhibit panic-like behaviour. Behavioural Brain Research, 2008, 193, 197-203.	2.2	33
107	Effect of Buspirone on the Behavioral Regulation of Rats in Low versus High Anxiety Conditions. Arzneimittelforschung, 2008, 58, 269-276.	0.4	24
108	latrogenic Traumatic Brain Injury. Journal of Craniofacial Surgery, 2007, 18, 674-679.	0.7	2