
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098957/publications.pdf Version: 2024-02-01

YUDI STOZHKOV

#	Article	IF	CITATIONS
1	An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature, 2009, 458, 607-60	9. 27.8	1,794
2	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
3	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
4	PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 2011, 332, 69-72.	12.6	686
5	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
6	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
7	PAMELA Results on the Cosmic-Ray Antiproton Flux from 60ÂMeV to 180ÂGeV in Kinetic Energy. Physical Review Letters, 2010, 105, 121101.	7.8	444
8	New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation. Physical Review Letters, 2009, 102, 051101.	7.8	434
9	Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625ÂGeV. Physical Review Letters, 2011, 106, 201101.	7.8	281
10	Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Physical Review Letters, 2013, 111, 081102.	7.8	243
11	Cosmic Ray Induced Ion Production in the Atmosphere. Space Science Reviews, 2008, 137, 149-173.	8.1	232
12	TIME DEPENDENCE OF THE PROTON FLUX MEASURED BY PAMELA DURING THE 2006 JULY-2009 DECEMBER SOLAR MINIMUM. Astrophysical Journal, 2013, 765, 91.	4.5	223
13	The PAMELA Mission: Heralding a new era in precision cosmic ray physics. Physics Reports, 2014, 544, 323-370.	25.6	147
14	MEASUREMENT OF BORON AND CARBON FLUXES IN COSMIC RAYS WITH THE PAMELA EXPERIMENT. Astrophysical Journal, 2014, 791, 93.	4.5	127
15	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
16	Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment. JETP Letters, 2013, 96, 621-627.	1.4	105
17	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	12.6	94
18	New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863.	4.9	92

#	Article	IF	CITATIONS
19	OBSERVATIONS OF THE 2006 DECEMBER 13 AND 14 SOLAR PARTICLE EVENTS IN THE 80 MeV n ^{–1} -3 GeV n ^{–1} RANGE FROM SPACE WITH THE PAMELA DETECTOR. Astrophysical Journal, 2011, 742, 102.	4.5	83
20	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	3.3	71
21	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	4.9	68
22	Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24. Astrophysical Journal Letters, 2018, 854, L2.	8.3	65
23	Solar Energetic Particle Events Observed by the PAMELA Mission. Astrophysical Journal, 2018, 862, 97.	4.5	63
24	TIME DEPENDENCE OF THE <i>e</i> ^{â^'} FLUX MEASURED BY <i>PAMELA</i> DURING THE 2006 JULY–2009 DECEMBER SOLAR MINIMUM. Astrophysical Journal, 2015, 810, 142.	4.5	60
25	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	4.9	58
26	The role of cosmic rays in the atmospheric processes. Journal of Physics C: Nuclear and Particle Physics, 2003, 29, 913-923.	3.6	54
27	Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015. Physical Review Letters, 2016, 116, 241105.	7.8	54
28	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	2.7	52
29	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	4.9	50
30	MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT. Astrophysical Journal, 2016, 818, 68.	4.5	49
31	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	4.9	49
32	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	4.9	46
33	The PAMELA space experiment. Advances in Space Research, 2013, 51, 209-218.	2.6	45
34	THE DISCOVERY OF GEOMAGNETICALLY TRAPPED COSMIC-RAY ANTIPROTONS. Astrophysical Journal Letters, 2011, 737, L29.	8.3	40
35	MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT. Astrophysical Journal, 2013, 770, 2.	4.5	39
36	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	4.9	38

#	Article	IF	CITATIONS
37	Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 149, 258-276.	1.6	37
38	Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter. Advances in Space Research, 2013, 51, 219-226.	2.6	36
39	Ion balance equation in the atmosphere. Journal of Geophysical Research, 1997, 102, 23413-23419.	3.3	35
40	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33
41	PAMELA and indirect dark matter searches. New Journal of Physics, 2009, 11, 105023.	2.9	31
42	TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT. Astrophysical Journal Letters, 2015, 799, L4.	8.3	27
43	PAMELA'S MEASUREMENTS OF MAGNETOSPHERIC EFFECTS ON HIGH-ENERGY SOLAR PARTICLES. Astrophysical Journal Letters, 2015, 801, L3.	8.3	27
44	Evidence of Energy and Charge Sign Dependence of the Recovery Time for the 2006 December Forbush Event Measured by the PAMELA Experiment. Astrophysical Journal, 2018, 853, 76.	4.5	27
45	Long-term negative trend in cosmic ray flux. Journal of Geophysical Research, 2000, 105, 9-17.	3.3	26
46	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	27.8	26
47	Cosmic Ray Induced Ion Production in the Atmosphere. Space Sciences Series of ISSI, 2008, , 149-173.	0.0	25
48	PAMELA's measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space Weather, 2016, 14, 210-220.	3.7	21
49	Time Dependence of the Flux of Helium Nuclei in Cosmic Rays Measured by the PAMELA Experiment between 2006 July and 2009 December. Astrophysical Journal, 2020, 893, 145.	4.5	21
50	Reentrant albedo proton fluxes measured by the PAMELA experiment. Journal of Geophysical Research: Space Physics, 2015, 120, 3728-3738.	2.4	20
51	Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases. Advances in Space Research, 2015, 55, 2940-2945.	2.6	18
52	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	3.1	18
53	Measurements of quasiâ€ŧrapped electron and positron fluxes with PAMELA. Journal of Geophysical Research, 2009, 114, .	3.3	17
54	Upper limit on the antihelium flux in primary cosmic rays. JETP Letters, 2011, 93, 628-631.	1.4	17

#	Article	IF	CITATIONS
55	Change in the rigidity dependence of the galactic cosmic ray modulation in 2008–2009. Advances in Space Research, 2012, 49, 784-790.	2.6	17
56	Cosmic rays in the stratosphere in 2008–2010. Astrophysics and Space Sciences Transactions, 2011, 7, 379-382.	1.0	15
57	New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space Experiment. Physical Review Letters, 2015, 115, 111101.	7.8	14
58	Lithium and Beryllium Isotopes with the PAMELAÂExperiment. Astrophysical Journal, 2018, 862, 141.	4.5	14
59	ABOUT SEPARATION OF HADRON AND ELECTROMAGNETIC CASCADES IN THE PAMELA CALORIMETER. International Journal of Modern Physics A, 2005, 20, 6745-6748.	1.5	13
60	Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux reconstruction with PAMELA. Advances in Space Research, 2017, 60, 788-795.	2.6	13
61	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	4.9	12
62	Helium Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24. Astrophysical Journal Letters, 2022, 925, L24.	8.3	12
63	Cosmic Ray Fluxes in Present and Past Times. Solar Physics, 2004, 224, 323-333.	2.5	11
64	Features of cosmic ray variation at the phase of the minimum between the 23rd and 24th solar cycles. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 782-785.	0.6	11
65	On the relationship between quasi-biennial variations of solar activity, the heliospheric magnetic field and cosmic rays. Cosmic Research, 2016, 54, 171-177.	0.6	11
66	Cosmic rays in the atmosphere: North - south asymmetry. Journal of Geophysical Research, 1996, 101, 2523-2528.	3.3	10
67	Cosmic ray measurements with Pamela experiment. Nuclear Physics, Section B, Proceedings Supplements, 2009, 190, 293-299.	0.4	10
68	On the status of the sunspot and magnetic cycles in the galactic cosmic ray intensity. Journal of Physics: Conference Series, 2013, 409, 012016.	0.4	10
69	Unexpected Cyclic Behavior in Cosmic-Ray Protons Observed by PAMELA at 1 au. Astrophysical Journal Letters, 2018, 852, L28.	8.3	10
70	Temporal Characteristics of Energetic Magnetospheric Electron Precipitation as Observed During Longâ€Term Balloon Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028033.	2.4	10
71	Correlation of the quasi-biennial oscillations in galactic cosmic rays and in the solar activity indices. Journal of Physics: Conference Series, 2015, 632, 012050.	0.4	9
72	SEARCH FOR ANISOTROPIES IN COSMIC-RAY POSITRONS DETECTED BY THE PAMELA EXPERIMENT. Astrophysical Journal, 2015, 811, 21.	4.5	9

#	Article	IF	CITATIONS
73	Precipitation of magnetospheric electrons into the Earth's atmosphere and the electrons of the outer radiation belt. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 215-218.	0.6	9
74	Variations in cosmic rays and the surface electric field in January 2016. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 241-244.	0.6	9
75	Solar modulation of the spectra of protons and helium nuclei in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 779-781.	0.6	8
76	S N Vernov and cosmic ray research in the Earth atmosphere. Physics-Uspekhi, 2011, 54, 210-215.	2.2	8
77	Ionization in the atmosphere, comparison between measurements and simulations. Astrophysics and Space Sciences Transactions, 2011, 7, 29-33.	1.0	8
78	Cosmic Ray Study with the PAMELA Experiment. Journal of Physics: Conference Series, 2013, 409, 012003.	0.4	8
79	Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics. Geomagnetism and Aeronomy, 2017, 57, 147-155.	0.8	8
80	LONG-TERM BALLOON COSMIC RAY EXPERIMENT: RESULTS OF ANALYSIS OF ENERGETIC ELECTRON PRECIPITATION EVENTS. International Journal of Modern Physics A, 2005, 20, 6843-6845.	1.5	7
81	The anomalous PAMELA effect and its explanation. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 323-326.	0.6	7
82	Galactic cosmic ray intensity simulation with spatial and temporal dependence of fluctuations of the helioshperic magnetic field. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 609-612.	0.6	7
83	Cosmic rays, solar activity, and changes in the Earth's climate. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 252-254.	0.6	7
84	Solar-cycle Variations of South Atlantic Anomaly Proton Intensities Measured with the PAMELA Mission. Astrophysical Journal Letters, 2021, 917, L21.	8.3	7
85	A search algorithm for finding Cosmic-Ray anisotropy with the PAMELA calorimeter. Journal of Physics: Conference Series, 2013, 409, 012029.	0.4	6
86	New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with the calorimeter in the PAMELA experiment. Journal of Experimental and Theoretical Physics, 2014, 119, 448-452.	0.9	6
87	Description of galactic cosmic ray intensity in the last three solar activity minima. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 606-608.	0.6	6
88	The Future Space-Based GAMMA-400 Gamma-Ray Telescope for Studying Gamma and Cosmic Rays. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 629-631.	0.6	6
89	Red dwarfs as sources of cosmic rays and detection of TeV gamma-rays from these stars. Advances in Space Research, 2019, 64, 2585-2594.	2.6	6
90	Solar energetic particle events in 2006-2012 in the PAMELA experiment data. Journal of Physics: Conference Series, 2013, 409, 012188.	0.4	5

#	Article	IF	CITATIONS
91	The May 17, 2012 solar event: back-tracing analysis and flux reconstruction with PAMELA. Journal of Physics: Conference Series, 2016, 675, 032006.	0.4	5
92	High-energy gamma-ray studying with GAMMA-400 after Fermi-LAT. Journal of Physics: Conference Series, 2017, 798, 012011.	0.4	5
93	The PAMELA Experiment: A Cosmic Ray Experiment Deep Inside the Heliosphere. , 2017, , .		5
94	Anisotropy studies in the cosmic ray proton flux with the PAMELA experiment. Nuclear Physics, Section B, Proceedings Supplements, 2013, 239-240, 123-128.	0.4	4
95	Galactic deuteron spectrum measured in PAMELA experiment. Journal of Physics: Conference Series, 2013, 409, 012040.	0.4	4
96	Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 273-275.	1.6	4
97	The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations. Journal of Physics: Conference Series, 2016, 675, 032009.	0.4	4
98	Spectra of solar neutrons with energies of ~10–1000 MeV in the PAMELA experiment in the flare events of 2006–2015. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 132-135.	0.6	4
99	The PAMELA experiment: a decade of Cosmic Ray Physics in space. Journal of Physics: Conference Series, 2017, 798, 012033.	0.4	4
100	Characteristics of the Energetic Electron Precipitation and Magnetospheric Conditions in 1994. Geomagnetism and Aeronomy, 2018, 58, 483-492.	0.8	4
101	Measuring fluxes of the protons and helium nuclei of high-energy cosmic rays. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 327-330.	0.6	3
102	Spectral peculiarities of high energy X-ray radiation, gamma radiation, and Submillimeter radio emission in the impulsive phase of a solar flare. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 747-750.	0.6	3
103	Search for cosmic ray electron-positron anisotropies with the Pamela data. Journal of Physics: Conference Series, 2013, 409, 012055.	0.4	3
104	Analysis of cosmic ray variations recorded in October–December 2013. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 570-572.	0.6	3
105	Developing a compact ground-based neutron detector. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 696-699.	0.6	3
106	Study of the energy spectrum and mass composition of primary cosmic rays in the energy range of 1018–1020 eV using a balloon setup in antarctica (SPHERE-antarctica project). Bulletin of the Lebedev Physics Institute, 2016, 43, 80-86.	0.6	3
107	Secondary positrons and electrons in near-Earth space in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 203-205.	0.6	3
108	Crossovers of the energy spectra of galactic cosmic rays in the activity minima of consecutive solar cycles. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 162-165.	0.6	3

#	Article	IF	CITATIONS
109	Space-based GAMMA-400 mission for direct gamma- and cosmic-ray observations. Journal of Physics: Conference Series, 2019, 1181, 012041.	0.4	3
110	East–West Proton Flux Anisotropy Observed with the PAMELA Mission. Astrophysical Journal, 2021, 919, 114.	4.5	3
111	Comments on the Paper of H.S. Ahluwalia "On galactic cosmic ray flux decrease near solar activity minimum and Imf intensity― Geophysical Research Letters, 2001, 28, 947-948.	4.0	2
112	Cosmic rays in the Earth's atmosphere. Moscow University Physics Bulletin (English Translation of) Tj ETQqO	0 0 rgBT / 0.4	Overlock 10 ⁻
113	Search for continuum solar flare radiation in the terahertz range. , 2010, , .		2
114	Results from PAMELA. Nuclear Physics, Section B, Proceedings Supplements, 2011, 217, 243-248.	0.4	2
115	Measurement of galactic cosmic-ray deuteron spectrum in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 606-608.	0.6	2
116	Spectra of primary cosmic-ray positrons and electrons in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1309-1311.	0.6	2
117	Criteria for selecting electrons with energies above 50 GeV according to the PAMELA experiment data. Bulletin of the Lebedev Physics Institute, 2013, 40, 21-26.	0.6	2
118	Measurement of antiproton flux in primary cosmic radiation with PAMELA experiment. Journal of Physics: Conference Series, 2013, 409, 012056.	0.4	2
119	A method to detect positron anisotropies with Pamela data. Nuclear Physics, Section B, Proceedings Supplements, 2014, 256-257, 173-178.	0.4	2
120	Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 158-161.	1.6	2
121	The heliospheric magnetic field and its relation to the temperature, density, and velocity of solar plasma: Experimental evidence. Cosmic Research, 2014, 52, 15-24.	0.6	2
122	Solar modulation of GCR electrons over the 23rd solar minimum with PAMELA. Journal of Physics: Conference Series, 2015, 632, 012073.	0.4	2
123	Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements. Journal of Physics: Conference Series, 2016, 675, 032010.	0.4	2
124	The measurement of the dipole anisotropy of protons and helium cosmic rays with the PAMELA experiment. Journal of Physics: Conference Series, 2016, 675, 032005.	0.4	2
125	PAMELA spectrometer data processing. Bulletin of the Lebedev Physics Institute, 2016, 43, 102-107.	0.6	2
126	Modulation of electrons and positrons in 2006–2015 in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 154-156.	0.6	2

#	Article	IF	CITATIONS
127	Red Dwarfs as Sources of Cosmic Rays and First Detection of TeV Gamma-rays from these stars. Journal of Physics: Conference Series, 2019, 1181, 012018.	0.4	2
128	A System for Generating the Trigger Signals of the Spaceborne GAMMA-400 Telescope. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 625-628.	0.6	2
129	Studying Variations in Neutron Fluxes with a Ground-Based Neutron Detector. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 611-613.	0.6	2
130	Galactic Cosmic Ray Electrons and Positrons over a Decade of Observations in the PAMELA Experiment. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 974-976.	0.6	2
131	Long-Term Evolution of the Occurrence Rate of Magnetospheric Electron Precipitation into the Earth's Atmosphere. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 584-587.	0.6	2
132	Variations in Charged and Neutral Components of Cosmic Rays in the CASLEO Seismic Zone. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1325-1327.	0.6	2
133	COSMIC RAY FLUXES IN THE MAXIMUM PHASE OF SOLAR ACTIVITY CYCLES. International Journal of Modern Physics A, 2005, 20, 6669-6671.	1.5	1
134	The PAMELA Space Mission for Antimatter and Dark Matter Searches in Cosmic Rays. , 2010, , .		1
135	The search for antihelium in cosmic rays using data from the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 331-333.	0.6	1
136	Primary electron and positron fluxes measured by the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 316-318.	0.6	1
137	High-energy cosmic ray proton spectrum. Bulletin of the Lebedev Physics Institute, 2011, 38, 68-75.	0.6	1
138	PAMELA and electrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 630, 28-35.	1.6	1
139	Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 493-496.	0.6	1
140	Antiprotons of galactic cosmic radiation in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 602-605.	0.6	1
141	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .		1
142	Cosmic ray electron and positron spectra measured with PAMELA. Journal of Physics: Conference Series, 2013, 409, 012035.	0.4	1
143	PAMELA mission: heralding a new era in cosmic ray physics. EPJ Web of Conferences, 2014, 71, 00115.	0.3	1
144	PAMELA measurements of the boron and carbon spectra. Journal of Physics: Conference Series, 2015, 632, 012017.	0.4	1

#	Article	IF	CITATIONS
145	The PAMELA experiment and cosmic ray observations. Nuclear and Particle Physics Proceedings, 2015, 265-266, 242-244.	0.5	1
146	Measuring the albedo deuteron flux in the PAMELA satellite experiment. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 294-297.	0.6	1
147	Searching for anisotropy of positrons and electrons in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 298-301.	0.6	1
148	Comparison of measured and calculated magnetic fields along the Ulysses orbit. Advances in Space Research, 2015, 55, 908-919.	2.6	1
149	Trapped positrons observed by PAMELA experiment. Journal of Physics: Conference Series, 2016, 675, 032003.	0.4	1
150	PAMELA spectrum of electrons and positrons of cosmic rays in the energy range of 0.05–1.2 TeV. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 404-406.	0.6	1
151	New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT. EPJ Web of Conferences, 2017, 145, 06001.	0.3	1
152	Solar Activity and Cosmic Ray Variations in September 2017. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 543-546.	0.6	1
153	Accounting for meteorological effects in the detector of the charged component of cosmic rays. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10, 219-226.	1.6	1
154	COSMIC RAY STUDIES WITH PAMELA EXPERIMENT. , 2010, , .		1
155	Search for a positron anisotropy with PAMELA experiment. ASTRA Proceedings, 0, 2, 17-20.	0.0	1
156	Precision studies of cosmic rays with the PAMELA satellite experiment. , 2009, , .		0
157	Dark Matter Research and the PAMELA Space Mission. , 2009, , .		0
158	Performance of the PAMELA Si-W imaging calorimeter in space. Journal of Physics: Conference Series, 2009, 160, 012039.	0.4	0
159	Pamela is cracking a window into the dark matter world. Herald of the Russian Academy of Sciences, 2010, 80, 350-353.	0.6	0
160	Solar activity at present and in the near future. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 860-863.	0.6	0
161	Trapped antiprotons in the Earth inner radiation belt in PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 854-856.	0.6	0
162	THE PAMELA EXPERIMENT: FIVE YEARS OF COSMIC RAYS INVESTIGATION. Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications, 2012, , 124-133.	0.1	0

#	Article	IF	CITATIONS
163	The PAMELA space mission for antimatter and dark matter searches in space. Hyperfine Interactions, 2012, 213, 147-158.	0.5	0
164	On the new prolonged solar activity minimum. Bulletin of the Lebedev Physics Institute, 2013, 40, 27-33.	0.6	0
165	Charged particle fluxes in the near-ground atmosphere. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 575-577.	0.6	0
166	Searching for cosmic ray anisotropy using the calorimeter in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1305-1308.	0.6	0
167	Ion production rates and cross-sections from the atmospheric observations and comparison with the cloud experiment results. , 2013, , .		0
168	Study of solar modulation of galactic cosmic rays with the PAMELA and ARINA spectrometers in 2006-2012. Journal of Physics: Conference Series, 2013, 409, 012194.	0.4	0
169	Cosmic ray modulation in the current 24th solar cycle from the measurements in the atmosphere. Journal of Physics: Conference Series, 2013, 409, 012195.	0.4	Ο
170	The PAMELA experiment: light-nuclei selection with stand-alone detectors. Journal of Physics: Conference Series, 2013, 409, 012038.	0.4	0
171	Cosmic rays and radioactivity in the near-ground level of the atmosphere. Journal of Physics: Conference Series, 2013, 409, 012213.	0.4	Ο
172	PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA. Acta Polytechnica, 2013, 53, 712-717.	0.6	0
173	The PAMELA experiment and antimatter in the universe. Hyperfine Interactions, 2014, 228, 101-109.	0.5	Ο
174	Solar Modulation of Galactic Cosmic Rays During 2006-2015 Based on PAMELA and ARINA Data. Physics Procedia, 2015, 74, 347-351.	1.2	0
175	Splash and Re-entrant Albedo Fluxes Measured in the PAMELA Experiment. Physics Procedia, 2015, 74, 314-319.	1.2	Ο
176	Search for Spatial and Temporary Variations of Galactic Cosmic Ray Positrons in PAMELA Experiment. Physics Procedia, 2015, 74, 302-307.	1.2	0
177	Time variations of proton flux in Earth inner radiation belt during 23/24 solar cycles based on the PAMELA and the ARINA data. Journal of Physics: Conference Series, 2015, 632, 012069.	0.4	Ο
178	Current status of the MONICA experiment to study the ionic composition of solar cosmic rays. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 700-703.	0.6	0
179	Study of deuteron spectra under radiation belt with PAMELA instrument. Journal of Physics: Conference Series, 2015, 632, 012060.	0.4	0
180	Array of scintillation detectors for the MONICA spectrometer. Bulletin of the Lebedev Physics Institute, 2015, 42, 333-337.	0.6	0

#	Article	IF	CITATIONS
181	Features of re-entrant albedo deuteron trajectories in near Earth orbit with PAMELA experiment. Journal of Physics: Conference Series, 2016, 675, 032007.	0.4	Ο
182	Deuteron spectrum measurements under radiation belt with PAMELA instrument. Nuclear and Particle Physics Proceedings, 2016, 273-275, 2345-2347.	0.5	0
183	H, He, Li and Be Isotopes in the PAMELA-Experiment. Journal of Physics: Conference Series, 2016, 675, 032001.	0.4	Ο
184	Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope. Journal of Physics: Conference Series, 2017, 798, 012012.	0.4	0
185	Solar modulation of cosmic deuteron fluxes in the PAMELA experiment. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 151-153.	0.6	Ο
186	Sharp increasing of positron to electron fluxes ratio below 2 GV measured by the PAMELA. Journal of Physics: Conference Series, 2017, 798, 012019.	0.4	0
187	Solar modulation of galactic cosmic rays during 2006-2015 based on PAMELA and ARINA data. Journal of Physics: Conference Series, 2017, 798, 012042.	0.4	Ο
188	Stratospheric Measurements of Magnetospheric Electron Precipitation and Interplanetary Medium Conditions in Solar Activity Cycles 22–24. Solar System Research, 2018, 52, 189-194.	0.7	0
189	Trapped Positrons and Electrons in the Inner Radiation Belt According to Data of the PAMELA Experiment. Physics of Atomic Nuclei, 2018, 81, 515-519.	0.4	Ο
190	Estimation of the Backscattered Particle Flux in the PAMELA Calorimeter. Bulletin of the Lebedev Physics Institute, 2019, 46, 41-47.	0.6	0
191	Minimum Value of the Heliospheric Magnetic Field in 2008–2010, According to WIND and ACE Data. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 559-562.	0.6	Ο
192	Time dependence of the helium flux measured by PAMELA. EPJ Web of Conferences, 2019, 209, 01004.	0.3	0
193	Cosmic Rays Investigation by the PAMELA experiment. Journal of Physics: Conference Series, 2020, 1342, 012017.	0.4	Ο
194	Time dependence of the proton and helium flux measured by PAMELA. Journal of Physics: Conference Series, 2020, 1342, 012124.	0.4	0
195	The PAMELA space mission. , 2008, , .		Ο
196	The PAMELA space mission for antimatter and dark matter searches in space. , 2011, , 367-378.		0
197	Measurements of electron and positron fluxes below the geomagnetic cutoff by the PAMELA magnetic spectrometer. , 2017, , .		0
198	Cosmic-Ray Lithium and Beryllium Isotopes in the PAMELA-Experiment. , 2017, , .		0

#	Article	IF	CITATIONS
199	Short-term variation in the galactic cosmic ray intensity measured with the PAMELA experiment. , 2017, , .		0
200	About Cosmic Ray Sources in Galaxy. Physics of Atomic Nuclei, 2021, 84, 1007-1010.	0.4	0