
Miguel Antonio Peña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098902/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced stability of SrRuO3 mixed oxide via monovalent doping in Sr1-xKxRuO3 for the oxygen evolution reaction. Journal of Power Sources, 2022, 521, 230950.	7.8	15
2	Electrooxidation of ethanol and acetaldehyde in neutral electrolyte, an infrared study. Journal of Electroanalytical Chemistry, 2022, 908, 115968.	3.8	3
3	Study of the evolution of FeN C and Fe3C species in Fe/N/C catalysts during the oxygen reduction reaction in acid and alkaline electrolyte. Journal of Power Sources, 2021, 490, 229487.	7.8	34
4	Effect of the Thermal Treatment of Fe/N/C Catalysts for the Oxygen Reduction Reaction Synthesized by Pyrolysis of Covalent Organic Frameworks. Industrial & Engineering Chemistry Research, 2021, 60, 18759-18769.	3.7	12
5	Fe doped porous triazine as efficient electrocatalysts for the oxygen reduction reaction in acid electrolyte. Applied Catalysis B: Environmental, 2020, 264, 118507.	20.2	27
6	Infrared study of the electrooxidation of ethanol in alkaline electrolyte with Pt/C, PtRu/C and Pt3Sn. Electrochimica Acta, 2019, 319, 312-322.	5.2	13
7	Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nature Communications, 2019, 10, 2041.	12.8	227
8	Insights on the electrooxidation of ethanol with Pd-based catalysts in alkaline electrolyte. International Journal of Hydrogen Energy, 2019, 44, 31995-32002.	7.1	27
9	Two-dimensional Pd-nanosheets as efficient electrocatalysts for ethanol electrooxidation. Evidences of the C C scission at low potentials. Applied Catalysis B: Environmental, 2018, 237, 866-875.	20.2	81
10	Structural effects of LaNiO3 as electrocatalyst for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 203, 363-371.	20.2	69
11	In Situ Infrared Study of the Electrooxidation of Ethanol and Acetaldehyde in Acid Electrolyte. ChemElectroChem, 2016, 3, 1072-1083.	3.4	16
12	Evidences of the presence of different types of active sites for the oxygen reduction reaction with Fe/N/C based catalysts. Journal of Power Sources, 2016, 327, 204-211.	7.8	28
13	Repercussion of the carbon matrix for the activity and stability of Fe/N/C electrocatalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2016, 183, 185-196.	20.2	63
14	Influence of the electrolyte for the oxygen reduction reaction with Fe/N/C and Fe/N/CNT electrocatalysts. Journal of Power Sources, 2014, 271, 87-96.	7.8	40
15	Inâ€Situ Study of Ethanol Electrooxidation on Monodispersed Pt ₃ Sn Nanoparticles. ChemElectroChem, 2014, 1, 885-895.	3.4	28
16	Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0wt.%lr/ZrO2 catalyst: Effect of meta position and catalytic performance. Catalysis Today, 2013, 213, 93-100.	4.4	44
17	TiC, TiCN, and TiN Supported Pt Electrocatalysts for CO and Methanol Oxidation in Acidic and Alkaline Media. Journal of Physical Chemistry C, 2013, 117, 20769-20777.	3.1	92
18	Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies. International Journal of Hydrogen Energy, 2012, 37, 7131-7140.	7.1	49

MIGUEL ANTONIO PEñA

#	Article	IF	CITATIONS
19	Electrooxidation of H2/CO on carbon-supported PtRu-MoO nanoparticles for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2011, 36, 14590-14598.	7.1	26
20	Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn–Pt interaction. Applied Catalysis B: Environmental, 2009, 91, 83-91.	20.2	77
21	La1â^'x Ca x NiO3 Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane. Catalysis Letters, 2008, 124, 195-203.	2.6	71
22	Relevance of the nature of bimetallic PtAu nanoparticles as electrocatalysts for the oxygen reduction reaction in the presence of methanol. Journal of Power Sources, 2008, 177, 9-16.	7.8	56
23	Preparation and characterization of nickel-based mixed-oxides and their performance for catalytic methane decomposition. Catalysis Today, 2008, 133-135, 367-373.	4.4	62
24	Catalytic evaluation of perovskite-type oxide LaNi1â^'xRuxO3 in methane dry reforming. Catalysis Today, 2008, 133-135, 129-135.	4.4	106
25	Effect of redox additives over Ni/Al2O3 catalysts on syngas production via methane catalytic partial oxidation. Fuel, 2008, 87, 3223-3231.	6.4	31
26	Novel Synthesis Method of CO-Tolerant PtRuâ^'MoO _{<i>x</i>} Nanoparticles: Structural Characteristics and Performance for Methanol Electrooxidation. Chemistry of Materials, 2008, 20, 4249-4259.	6.7	99
27	Influence of the Preparation Route of Bimetallic Ptâ^'Au Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2007, 111, 2913-2923.	3.1	160
28	Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chemical Reviews, 2007, 107, 3952-3991.	47.7	1,108
29	Factors influencing the thioresistance of nickel catalysts in aromatics hydrogenation. Applied Catalysis A: General, 2007, 317, 20-33.	4.3	32
30	Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol–gel derived lanthanum chromite perovskite. Applied Catalysis A: General, 2007, 327, 173-179.	4.3	100
31	An opening route to the design of cathode materials for fuel cells based on PtCo nanoparticles. Applied Catalysis B: Environmental, 2007, 77, 19-28.	20.2	53
32	Surface properties and catalytic performance of La1â^'Sr CrO3 perovskite-type oxides for CO and C3H6 combustion. Catalysis Communications, 2006, 7, 963-968.	3.3	110
33	A Study about the Propane Ammoxidation to Acrylonitrile with an Alumina-Supported Sbâ^'Vâ^'O Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 4537-4543.	3.7	33
34	Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon, 2006, 44, 1919-1929.	10.3	59
35	Structural features of La1â^'xCexNiO3 mixed oxides and performance for the dry reforming of methane. Applied Catalysis A: General, 2006, 311, 94-104.	4.3	206
36	Methanol electrooxidation on PtRu nanoparticles supported on functionalised carbon black. Catalysis Today, 2006, 116, 422-432.	4.4	68

MIGUEL ANTONIO PEñA

#	Article	IF	CITATIONS
37	Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation. Catalysis Today, 2006, 116, 304-312.	4.4	44
38	Hydrogen production via CH4 pyrolysis: Regeneration of ex hydrotalcite oxide catalysts. Catalysis Today, 2006, 116, 289-297.	4.4	35
39	Alumina-supported V–Mo–O mixed oxide catalysts, the formation of phases involving aluminum: AlVMoO7. Catalysis Today, 2006, 118, 353-359.	4.4	13
40	Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Applied Catalysis B: Environmental, 2006, 69, 75-84.	20.2	71
41	Partial oxidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Applied Catalysis A: General, 2005, 289, 214-223.	4.3	108
42	Enhanced methanol electrooxidation activity of PtRu nanoparticles supported on H2O2-functionalized carbon black. Carbon, 2005, 43, 3002-3005.	10.3	70
43	Characterization of precursors and reactivity of LaNi1â^'xCoxO3 for the partial oxidation of methane. Catalysis Today, 2005, 107-108, 906-912.	4.4	51
44	Support Effect in Supported Ni Catalysts on Their Performance for Methane Partial Oxidation. Catalysis Letters, 2003, 87, 211-218.	2.6	66
45	Mechanistic Aspects of Hydrogen Production by Partial Oxidation of Methanol Over Cu/ZnO Catalysts. Topics in Catalysis, 2003, 22, 245-251.	2.8	33
46	Activation of methane by oxygen and nitrogen oxides. Catalysis Reviews - Science and Engineering, 2002, 44, 1-58.	12.9	118
47	Selective oxidation of o-xylene over ternary V-Ti-Si catalysts. Applied Catalysis A: General, 2002, 224, 141-151.	4.3	19
48	Performance of alumina, zeolite, palladium, Pd–Ag alloy membranes for hydrogen separation from Towngas mixture. Journal of Membrane Science, 2002, 204, 329-340.	8.2	91
49	Production of Hydrogen by Partial Oxidation of Methanol over a Cu/ZnO/Al2O3 Catalyst: Influence of the Initial State of the Catalyst on the Start-Up Behaviour of the Reformer. Journal of Catalysis, 2002, 212, 112-118.	6.2	45
50	Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 2001, 101, 1981-2018.	47.7	2,309
51	Partial oxidation of methane into C1-oxygenates: role of homogeneous reactions and catalyst surface area. Catalysis Today, 2001, 71, 11-19.	4.4	10
52	Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Applied Catalysis B: Environmental, 2000, 24, 193-205.	20.2	521
53	Ethylene epoxidation in a catalytic packed-bed membrane reactor. Chemical Engineering Science, 1998, 53, 3821-3834.	3.8	62
54	Promoter effects of dichloromethane on the oxidative coupling of methane over MnMgO catalysts. Applied Catalysis A: General, 1995, 131, 243-261.	4.3	17

#	Article	IF	CITATIONS
55	Structure and reactivity of undoped and sodium- doped PbO/α-Al2O3 catalysts for oxidative coupling of methane. Applied Catalysis A: General, 1994, 111, 79-97.	4.3	11
56	Features of Li-Mn-MgO Catalysts and Their Relevance in the Oxidative Coupling of Methane. Journal of Catalysis, 1994, 147, 535-543.	6.2	25
57	Mg-Ni-O based OCM catalyst obtained by carbonate precursor method. Solid State Ionics, 1993, 63-65, 325-331.	2.7	2
58	An XPS and reduction study of PrCoO3. Journal of Materials Science, 1988, 23, 1018-1023.	3.7	30
59	A comparative study of the interactions of NO and CO with LaCrO3. Journal of Molecular Catalysis, 1988, 45, 355-363.	1.2	8
60	A study of NO and CO interactions with LaMnO3. Journal of Colloid and Interface Science, 1987, 119, 100-107.	9.4	28