S H Hejazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ€inâ€Liquid Printing. Advanced Materials Interfaces, 2022, 9, .	1.9	15

 $_{2}$ Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ \in inâ \in Liquid Printing (Adv.) Tj ETQq0.0 orgBT₁/Overlock

3	Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage. International Journal of Hydrogen Energy, 2022, 47, 14104-14120.	3.8	81
4	Mini Review on Wettability in the Methane–Liquid–Rock System at Reservoir Conditions: Implications for Gas Recovery and Geo-Storage. Energy & Fuels, 2022, 36, 4268-4275.	2.5	12
5	Suspensions and hydrogels of cellulose nanocrystals (CNCs): characterization using microscopy and rheology. Cellulose, 2022, 29, 3621-3653.	2.4	18
6	Wetting Dynamics of Nanoparticle Dispersions: From Fully Spreading to Non-sticking and the Deposition of Nanoparticle-Laden Surface Droplets. ACS Applied Materials & Interfaces, 2022, 14, 20280-20290.	4.0	1
7	Theoretical study of brine secondary imbibition in sandstone reservoirs: Implications for H2, CH4, and CO2 geo-storage. International Journal of Hydrogen Energy, 2022, 47, 18058-18066.	3.8	17
8	Self-assembly of highly ordered micro- and nanoparticle deposits. Nature Communications, 2022, 13, .	5.8	22
9	Spongy all-in-liquid materials by in-situ formation of emulsions at oil-water interfaces. Nature Communications, 2022, 13, .	5.8	13
10	Emulsification in a microfluidic flow-focusing device: Effect of the dispersed phase viscosity. Fuel, 2021, 283, 119229.	3.4	40
11	Spontaneous Formation of Double Emulsions at Particle-Laden Interfaces. Journal of Colloid and Interface Science, 2021, 587, 510-521.	5.0	11
12	Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125577.	2.3	57
13	Dual Stimuli-Responsive Pickering Emulsions from Novel Magnetic Hydroxyapatite Nanoparticles and Their Characterization Using a Microfluidic Platform. Langmuir, 2021, 37, 1353-1364.	1.6	18
14	The Effect of Flow Swing on Waterflood Under Oil-Wet Conditions: A Pore-Level Study. Transport in Porous Media, 2021, 137, 109-130.	1.2	1
15	Cellulose Nanocrystal Laden Oil–Water Interfaces: Interfacial Viscoelasticity, Emulsion Stability, and the Dynamics of Three-Phase Contact-Lines. Industrial & Engineering Chemistry Research, 2021, 60, 4892-4902.	1.8	6
16	Wetting dynamics of nanoliter water droplets in nanoporous media. Journal of Colloid and Interface Science, 2021, 589, 411-423.	5.0	31
17	Underground hydrogen storage: Influencing parameters and future outlook. Advances in Colloid and Interface Science, 2021, 294, 102473.	7.0	167
18	An ensemble learning approach to digital corona virus preliminary screening from cough sounds. Scientific Reports, 2021, 11, 15404.	1.6	50

S H Hejazi

#	Article	IF	CITATIONS
19	Rock-fluid interfacial tension at subsurface conditions: Implications for H2, CO2 and natural gas geo-storage. International Journal of Hydrogen Energy, 2021, 46, 25578-25585.	3.8	84
20	Confocal analysis of cellulose nanocrystal (CNC) based hydrogels and suspensions. Cellulose, 2021, 28, 10259-10276.	2.4	15
21	Low-permeability reservoir sample wettability characterization at multiple scales: Pore-, micro- and macro-contact angles. Journal of Natural Gas Science and Engineering, 2021, 95, 104229.	2.1	20
22	The interfacial properties of clay-coated quartz at reservoir conditions. Fuel, 2020, 262, 116461.	3.4	39
23	Pore-scale modeling of coupled thermal and solutal dispersion in double diffusive-advective flows through porous media. International Journal of Heat and Mass Transfer, 2020, 147, 118730.	2.5	5
24	A review on clay wettability: From experimental investigations to molecular dynamics simulations. Advances in Colloid and Interface Science, 2020, 285, 102266.	7.0	79
25	Quantitative Statistical Evaluation of Micro Residual Oil after Polymer Flooding Based on X-ray Micro Computed-Tomography Scanning. Energy & Fuels, 2020, 34, 10762-10772.	2.5	19
26	Functionalized multiscale visual models to unravel flow and transport physics in porous structures. Water Research, 2020, 175, 115676.	5.3	22
27	Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure inÂthe presence of salt in aqueous media. Cellulose, 2020, 27, 5729-5743.	2.4	42
28	Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology. Journal of Colloid and Interface Science, 2020, 576, 252-263.	5.0	32
29	Geomaterialâ€Functionalized Microfluidic Devices Using a Universal Surface Modification Approach. Advanced Materials Interfaces, 2019, 6, 1900995.	1.9	12
30	Cellulose nanocrystal structure in the presence of salts. Cellulose, 2019, 26, 9387-9401.	2.4	33
31	Methane (CH ₄) Wettability of Clay-Coated Quartz at Reservoir Conditions. Energy & Fuels, 2019, 33, 788-795.	2.5	64
32	Wetting Phase Disintegration and Detachment: Three-Dimensional Confocal Imaging of Two-Phase Distributions. Physical Review Applied, 2019, 11, .	1.5	13
33	Pore-level modeling of effective longitudinal thermal dispersion in non-isothermal flows through granular porous media. Chemical Engineering Science, 2019, 199, 451-462.	1.9	8
34	Role of chemical additives on water-based heavy oil mobilization: A microfluidic approach. Fuel, 2019, 241, 1195-1202.	3.4	22
35	Role of fluid density on quartz wettability. Journal of Petroleum Science and Engineering, 2019, 172, 511-516.	2.1	46
36	Thermal Conduction in Deforming Isotropic and Anisotropic Granular Porous Media with Rough Grain Surface. Transport in Porous Media, 2018, 124, 221-236.	1.2	6

S H Hejazi

#	Article	IF	CITATIONS
37	Noncontact and Nonintrusive Microwave-Microfluidic Flow Sensor for Energy and Biomedical Engineering. Scientific Reports, 2018, 8, 139.	1.6	125
38	CO ₂ and CH ₄ Wettabilities of Organic-Rich Shale. Energy & Fuels, 2018, 32, 1914-1922.	2.5	108
39	Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications. Lab on A Chip, 2018, 18, 285-295.	3.1	37
40	Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods. Energies, 2018, 11, 2145.	1.6	33
41	Effect of Elastic Deformation and Rough Grain Surface on Heat Conduction in Partially Saturated Granular Porous Media. Water Resources Research, 2018, 54, 9533-9548.	1.7	8
42	Colloidal Behavior of Cellulose Nanocrystals in Presence of Sodium Chloride. ChemistrySelect, 2018, 3, 4969-4978.	0.7	31
43	Longitudinal dispersion in heterogeneous layered porous media during stable and unstable pore-scale miscible displacements. Advances in Water Resources, 2018, 119, 125-141.	1.7	13
44	Wetting dynamics in two-liquid systems: Effect of the surrounding phase viscosity. Physical Review E, 2018, 97, 063104.	0.8	17
45	Pore scale evaluation of thermal conduction anisotropy in granular porous media using Lattice Boltzmann method. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 867-888.	1.6	11
46	Effect of deformation on the thermal conductivity of granular porous media with rough grain surface. Geophysical Research Letters, 2017, 44, 8285-8293.	1.5	18
47	Two phase flow of liquids in a narrow gap: Phase interference and hysteresis. Physics of Fluids, 2016, 28, 074102.	1.6	5
48	Estimation of concentrationâ€dependent diffusion coefficients of gases in heavy oils/bitumen using experimental pressureâ€decay data. Canadian Journal of Chemical Engineering, 2016, 94, 2407-2416.	0.9	16
49	Thermal conductivity of granular porous media: A pore scale modeling approach. AIP Advances, 2015, 5,	0.6	39
50	Estimation of surface-wave group velocity using slant stack in the generalized S-transform domain. Geophysics, 2015, 80, EN83-EN92.	1.4	32
51	Nonlinear simulation of transverse flow interactions with chemically driven convective mixing in porous media. Water Resources Research, 2013, 49, 4607-4618.	1.7	17
52	Stability of reactive interfaces in saturated porous media under gravity in the presence of transverse flows. Journal of Fluid Mechanics, 2012, 695, 439-466.	1.4	22
53	Viscous fingering of a miscible reactive <i>A</i> + <i>B</i> → <i>C</i> interface: a linear stability analysis. Journal of Fluid Mechanics, 2010, 652, 501-528.	1.4	88
54	Hydrodynamic instability in the transport of miscible reactive slices through porous media. Physical Review E, 2010, 81, 056321.	0.8	14