Hao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098288/publications.pdf

Version: 2024-02-01

687363 642732 26 585 13 23 citations h-index g-index papers 27 27 27 739 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	<i>Arabidopsis thaliana</i> AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4688-97.	7.1	97
2	ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development (Cambridge), 2015, 142, 4129-38.	2.5	60
3	Large-scale production of enhancer trapping lines for rice functional genomics. Plant Science, 2004, 167, 281-288.	3. 6	57
4	Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids. Plant Molecular Biology, 2010, 74, 167-181.	3.9	47
5	A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta, 2009, 230, 377-385.	3.2	40
6	A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling. PLoS Pathogens, 2021, 17, e1009388.	4.7	40
7	Prediction and Characterization of RXLR Effectors in <i>Pythium</i> Species. Molecular Plant-Microbe Interactions, 2020, 33, 1046-1058.	2.6	34
8	Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis. Planta, 2011, 234, 1151-1162.	3.2	26
9	A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nature Communications, 2022, 13, 2213.	12.8	25
10	The soybean cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content. Plant Growth Regulation, 2019, 88, 139-149.	3.4	23
11	Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Science, 2005, 168, 1571-1579.	3.6	20
12	GmDAD1, a Conserved Defender Against Cell Death 1 (DAD1) From Soybean, Positively Regulates Plant Resistance Against Phytophthora Pathogens. Frontiers in Plant Science, 2019, 10, 107.	3.6	16
13	CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation. Journal of Experimental Botany, 2020, 71, 970-985.	4.8	16
14	Phytophthora sojae leucine-rich repeat receptor-like kinases: diverse and essential roles in development and pathogenicity. IScience, 2021, 24, 102725.	4.1	13
15	Two <scp>ATAF</scp> transcription factors <scp>ANAC102</scp> and <scp>ATAF1</scp> contribute to the suppression of cytochrome <scp>P450</scp> â€mediated brassinosteroid catabolism in <i>Arabidopsis</i> . Physiologia Plantarum, 2021, 172, 1493-1505.	5.2	10
16	Putative Auxin and Light Responsive Promoter Elements From the Tomato spotted wilt tospovirus Genome, When Expressed as cDNA, Are Functional in Arabidopsis. Frontiers in Plant Science, 2019, 10, 804.	3.6	9
17	Identification and Functional Analysis of Four RNA Silencing Suppressors in Begomovirus Croton Yellow Vein Mosaic Virus. Frontiers in Plant Science, 2021, 12, 768800.	3.6	9
18	The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum. Fungal Genetics and Biology, 2020, 145, 103482.	2.1	7

#	Article	IF	CITATIONS
19	Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis. Planta, 2020, 252, 48.	3.2	7
20	Double-faced role of Bcl-2-associated athanogene 7 in plant– <i>Phytophthora</i> interaction. Journal of Experimental Botany, 2021, 72, 5751-5765.	4.8	7
21	Emerging Molecular Links Between Plant Photomorphogenesis and Virus Resistance. Frontiers in Plant Science, 2020, 11, 920.	3.6	6
22	PsGRASP, a Golgi Reassembly Stacking Protein in Phytophthora sojae, Is Required for Mycelial Growth, Stress Responses, and Plant Infection. Frontiers in Microbiology, 2021, 12, 702632.	3.5	6
23	Genome-wide identification and molecular evolution analysis of BPA genes in green plants. Phytopathology Research, 2020, 2, .	2.4	4
24	The NAC transcription factor ATAF2 promotes ethylene biosynthesis and response in <i>Arabidopsis thaliana</i> seedlings. FEBS Letters, 2022, 596, 1586-1599.	2.8	3
25	Nep1-Like Proteins From the Biocontrol Agent Pythium oligandrum Enhance Plant Disease Resistance Independent of Cell Death and Reactive Oxygen Species. Frontiers in Plant Science, 2022, 13, 830636.	3.6	3
26	Development of a TaqMan-based real-time PCR assay for detection and quantification of Pythium aphanidermatum in plant and soil samples. New Zealand Journal of Crop and Horticultural Science, 2020, 48, 244-256.	1.3	0