Stefan Cord-Landwehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098084/publications.pdf

Version: 2024-02-01

23 papers 966 citations 16 h-index 23 g-index

26 all docs

26 docs citations

26 times ranked 856 citing authors

#	Article	IF	CITATIONS
1	Quantification of chitosan in aqueous solutions by enzymatic hydrolysis and oligomer analysis via HPLC-ELSD. Carbohydrate Polymers, 2022, 283, 119141.	10.2	10
2	Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. MBio, $2021,12,.$	4.1	27
3	The non-sulfated ulvanobiuronic acid of ulvans is the smallest active unit able to induce an oxidative burst in dicot cells. Carbohydrate Polymers, 2021, 270, 118338.	10.2	6
4	In silico and inÂvitro analysis of an Aspergillus niger chitin deacetylase to decipher its subsite sugar preferences. Journal of Biological Chemistry, 2021, 297, 101129.	3.4	9
5	Deciphering the ChitoCode: fungal chitins and chitosans as functional biopolymers. Fungal Biology and Biotechnology, 2021, 8, 19.	5.1	11
6	Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. International Journal of Molecular Sciences, 2020, 21, 7835.	4.1	28
7	High-Throughput Screening Using UHPLC-MS To Characterize the Subsite Specificities of Chitosanases or Chitinases. Analytical Chemistry, 2020, 92, 3246-3252.	6.5	5
8	Patterns matter part 2: Chitosan oligomers with defined patterns of acetylation. Reactive and Functional Polymers, 2020, 151, 104577.	4.1	34
9	Patterns matter part 1: Chitosan polymers with non-random patterns of acetylation. Reactive and Functional Polymers, 2020, 151, 104583.	4.1	49
10	Enzymatic Production and Enzymatic-Mass Spectrometric Fingerprinting Analysis of Chitosan Polymers with Different Nonrandom Patterns of Acetylation. Journal of the American Chemical Society, 2019, 141, 3137-3145.	13.7	39
11	Expression of Bacillus licheniformis chitin deacetylase in E. coli pLysS: Sustainable production, purification and characterisation. International Journal of Biological Macromolecules, 2019, 131, 1008-1013.	7.5	10
12	Endochitinase 1 (Tv-ECH1) from Trichoderma virens has high subsite specificities for acetylated units when acting on chitosans. International Journal of Biological Macromolecules, 2018, 114, 453-461.	7.5	7
13	A chitin deacetylase of Podospora anserina has two functional chitin binding domains and a unique mode of action. Carbohydrate Polymers, 2018, 183, 1-10.	10.2	37
14	â€~Slipped Sandwich' Model for Chitin and Chitosan Perception in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2018, 31, 1145-1153.	2.6	66
15	Quantitative Mass-Spectrometric Sequencing of Chitosan Oligomers Revealing Cleavage Sites of Chitosan Hydrolases. Analytical Chemistry, 2017, 89, 2893-2900.	6.5	47
16	Chitinosanase: A fungal chitosan hydrolyzing enzyme with a new and unusually specific cleavage pattern. Carbohydrate Polymers, 2017, 174, 1121-1128.	10.2	27
17	Reassessment of chitosanase substrate specificities and classification. Nature Communications, 2017, 8, 1698.	12.8	59
18	Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode. Scientific Reports, 2017, 7, 17692.	3.3	62

#	Article	IF	CITATIONS
19	A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Scientific Reports, 2016, 6, 38018.	3.3	136
20	A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation. Applied and Environmental Microbiology, 2016, 82, 6645-6655.	3.1	63
21	Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Scientific Reports, 2015, 5, 8716.	3.3	108
22	Chitinases Are Essential for Cell Separation in Ustilago maydis. Eukaryotic Cell, 2015, 14, 846-857.	3.4	51
23	Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydrate Polymers, 2012, 90, 41-48.	10.2	71