Guang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8097728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Density Carbon Nanotube Buckypapers with Superior Transport and Mechanical Properties. Nano Letters, 2012, 12, 4848-4852.	4.5	170
2	Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon, 2019, 148, 1-8.	5.4	113
3	Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators. Energy Conversion and Management, 2019, 183, 109-115.	4.4	46
4	Excellent heat dissipation properties of the super-aligned carbon nanotube films. RSC Advances, 2016, 6, 61686-61694.	1.7	42
5	Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy, 2020, 77, 105096.	8.2	41
6	Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials. Nano Letters, 2018, 18, 1770-1776.	4.5	34
7	Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices. ACS Applied Materials & Interfaces, 2016, 8, 31202-31211.	4.0	32
8	Hard Carbon Nanotube Sponges for Highly Efficient Cooling <i>via</i> Moisture Absorption–Desorption Process. ACS Nano, 2020, 14, 14091-14099.	7.3	31
9	Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9, 3133-3139.	2.8	24
10	Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes. Scientific Reports, 2013, 3, 2549.	1.6	23
11	Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films. Applied Thermal Engineering, 2020, 166, 114623.	3.0	22
12	Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process. Journal of Colloid and Interface Science, 2019, 552, 613-621.	5.0	19
13	Enhancement of evaporative heat transfer on carbon nanotube sponges by electric field reinforced wettability. Applied Surface Science, 2018, 454, 262-269.	3.1	18
14	Temperature Dependence of Thermal Boundary Resistances between Multiwalled Carbon Nanotubes and Some Typical Counterpart Materials. ACS Nano, 2012, 6, 3057-3062.	7.3	14
15	Electrical potential induced switchable wettability of super-aligned carbon nanotube films. Applied Surface Science, 2018, 427, 628-635.	3.1	13
16	The electrically induced bubble behaviors considering different bubble injection directions. International Journal of Heat and Mass Transfer, 2017, 104, 729-742.	2.5	12
17	Effective surface emissivity and heat dissipation among integrated bamboo-like super-black vertical carbon nanotube array electrodes in silicon via holes. Carbon, 2020, 158, 846-856.	5.4	6
18	Investigation of Dropwise Condensation on a Super-Aligned Carbon Nanotube Mesh-Coated Surface. Langmuir, 2021, 37, 2629-2638.	1.6	2