
Assistâ€P.rof Luca Laraia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chemical Science, 2014, 5, 1804-1809.	3.7	165
2	Principle and design of pseudo-natural products. Nature Chemistry, 2020, 12, 227-235.	6.6	134
3	Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions. Chemistry and Biology, 2015, 22, 689-703.	6.2	130
4	Chemical genetics. Chemical Society Reviews, 2011, 40, 4332.	18.7	108
5	Stereoselective Synthesis of <i>cis</i> - and <i>trans</i> -2,3-Disubstituted Tetrahydrofurans via Oxoniumâ^'Prins Cyclization: Access to the Cordigol Ring System. Organic Letters, 2010, 12, 900-903.	2.4	79
6	Diversity-oriented synthesis as a tool for identifying new modulators of mitosis. Nature Communications, 2014, 5, 3155.	5.8	73
7	Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angewandte Chemie - International Edition, 2021, 60, 15705-15723.	7.2	73
8	Highly Enantioselective Catalytic Vinylogous Propargylation of Coumarins Yields a Class of Autophagy Inhibitors. Angewandte Chemie - International Edition, 2017, 56, 11232-11236.	7.2	64
9	Synthesis of Indomorphan Pseudoâ€Natural Product Inhibitors of Glucose Transporters GLUTâ€1 and â€3. Angewandte Chemie - International Edition, 2019, 58, 17016-17025.	7.2	61
10	Discovery of Novel Cinchonaâ€Alkaloidâ€Inspired Oxazatwistane Autophagy Inhibitors. Angewandte Chemie - International Edition, 2017, 56, 2145-2150.	7.2	60
11	The cholesterol transfer protein GRAMD1A regulates autophagosome biogenesis. Nature Chemical Biology, 2019, 15, 710-720.	3.9	59
12	Small molecule probes for targeting autophagy. Nature Chemical Biology, 2021, 17, 653-664.	3.9	52
13	New Prodigiosin Derivatives Obtained by Mutasynthesis in <i>Pseudomonas putida</i> . ACS Synthetic Biology, 2017, 6, 1757-1765.	1.9	49
14	Natural product inspired compound collections: evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discovery Today: Technologies, 2017, 23, 75-82.	4.0	45
15	Phenotypic Identification of a Novel Autophagy Inhibitor Chemotype Targeting Lipid Kinase VPS34. Angewandte Chemie - International Edition, 2017, 56, 8153-8157.	7.2	45
16	Bioactive Compound Collections: From Design to Target Identification. CheM, 2018, 4, 705-730.	5.8	42
17	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€5equestering Autophagy Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 5721-5729.	7.2	41
18	Synthesis and biological profiling of tellimagrandin I and analogues reveals that the medium ring can significantly modulate biological activity. Organic and Biomolecular Chemistry, 2012, 10, 2590.	1.5	39

#	Article	IF	CITATIONS
19	Phenotyping Reveals Targets of a Pseudoâ€Naturalâ€Product Autophagy Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 12470-12476.	7.2	39
20	Discovery of the novel autophagy inhibitor aumitin that targets mitochondrial complex I. Chemical Science, 2018, 9, 3014-3022.	3.7	34
21	A two-directional strategy for the diversity-oriented synthesis of macrocyclic scaffolds. Organic and Biomolecular Chemistry, 2012, 10, 7545.	1.5	32
22	Small-Molecule Inhibitors of Reactive Oxygen Species Production. Journal of Medicinal Chemistry, 2021, 64, 5252-5275.	2.9	26
23	Palladiumâ€Catalysed Crossâ€Coupling of Vinyldisiloxanes with Benzylic and Allylic Halides and Sulfonates. Chemistry - A European Journal, 2012, 18, 8774-8779.	1.7	24
24	Vinyldisiloxanes: their synthesis, cross coupling and applications. Organic and Biomolecular Chemistry, 2011, 9, 504-515.	1.5	22
25	Synthesis of Indomorphan Pseudoâ€Natural Product Inhibitors of Glucose Transporters GLUTâ€1 and â€3. Angewandte Chemie, 2019, 131, 17172-17181.	1.6	22
26	Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chemical Biology, 2021, 28, 1750-1757.e5.	2.5	22
27	Discovery of Novel Cinchonaâ€Alkaloidâ€Inspired Oxazatwistane Autophagy Inhibitors. Angewandte Chemie, 2017, 129, 2177-2182.	1.6	21
28	Synthesis of a novel polycyclic ring scaffold with antimitotic properties via a selective domino Heck–Suzuki reaction. Chemical Science, 2015, 6, 390-396.	3.7	19
29	Phenotyping Reveals Targets of a Pseudoâ€Naturalâ€Product Autophagy Inhibitor. Angewandte Chemie, 2020, 132, 12570-12576.	1.6	19
30	Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angewandte Chemie, 2021, 133, 15837-15855.	1.6	18
31	High Content Screening of Diverse Compound Libraries Identifies Potent Modulators of Tubulin Dynamics. ACS Medicinal Chemistry Letters, 2014, 5, 598-603.	1.3	15
32	Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterolâ€Inspired Compound Collection. Angewandte Chemie - International Edition, 2021, 60, 26755-26761.	7.2	14
33	Modulation of autophagy by the novel mitochondrial complex I inhibitor Authipyrin. Bioorganic and Medicinal Chemistry, 2019, 27, 2444-2448.	1.4	13
34	EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS Discovery, 2019, 24, 398-413.	1.4	12
35	A Concise Total Synthesis of Deoxyschizandrin and Exploration of Its Antiproliferative Effects and those of Structurally Related Derivatives. Chemistry - A European Journal, 2012, 18, 3193-3198.	1.7	11
36	lmageâ€Based Morphological Profiling Identifies a Lysosomotropic, Iron‣equestering Autophagy Inhibitor. Angewandte Chemie, 2020, 132, 5770-5778.	1.6	11

#	Article	IF	CITATIONS
37	Phenotypic Identification of a Novel Autophagy Inhibitor Chemotype Targeting Lipid Kinase VPS34. Angewandte Chemie, 2017, 129, 8265-8269.	1.6	8
38	Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors. Tetrahedron, 2018, 74, 4531-4537.	1.0	8
39	Development of a Novel Cell-Permeable Protein–Protein Interaction Inhibitor for the Polo-box Domain of Polo-like Kinase 1. ACS Omega, 2020, 5, 822-831.	1.6	6
40	Highly Enantioselective Catalytic Vinylogous Propargylation of Coumarins Yields a Class of Autophagy Inhibitors. Angewandte Chemie, 2017, 129, 11384-11388.	1.6	5
41	Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorganic and Medicinal Chemistry, 2022, 68, 116856.	1.4	4
42	Thermal Proteome Profiling Reveals Distinct Target Selectivity for Differentially Oxidized Oxysterols. ACS Chemical Biology, 2022, 17, 1677-1684.	1.6	4
43	Thermal proteome profiling efficiently identifies ribosome destabilizing oxazolidinones. Tetrahedron, 2021, 87, 132118.	1.0	2
44	Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterolâ€Inspired Compound Collection. Angewandte Chemie, 2021, 133, 26959-26965.	1.6	2
45	Unravelling the Mode of Action of Furanoheliangolides through Total Synthesis and Chemical Proteomics. ACS Central Science, 2021, 7, 923-925.	5.3	0
46	A Photochemical Microfluidic Reactor for Photosensitized [2+2] Cycloadditions. Synlett, 0, , .	1.0	0