viviana Moresi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8096601/publications.pdf Version: 2024-02-01

VIVIANA MODESI

#	Article	IF	CITATIONS
1	Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Frontiers in Physiology, 2022, 13, 706003.	1.3	8
2	Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1339-1359.	2.9	11
3	Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibroâ€adipogenic progenitors. EMBO Reports, 2022, 23, e54721.	2.0	7
4	HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers. Genome Biology, 2021, 22, 129.	3.8	29
5	Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites, 2021, 11, 517.	1.3	6
6	Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. International Journal of Molecular Sciences, 2020, 21, 1092.	1.8	25
7	Metabolic Control of Stemness and Differentiation. Stem Cells International, 2019, 2019, 1-2.	1.2	Ο
8	Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports, 2019, 13, 573-589.	2.3	38
9	Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine, 2019, 40, 717-732.	2.7	39
10	The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Frontiers in Physiology, 2019, 10, 500.	1.3	76
11	The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Frontiers in Physiology, 2019, 10, 401.	1.3	23
12	The Role of Autophagy in Liver Epithelial Cells and Its Impact on Systemic Homeostasis. Nutrients, 2019, 11, 827.	1.7	29
13	Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. International Journal of Molecular Sciences, 2019, 20, 5754.	1.8	10
14	HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Scientific Reports, 2018, 8, 3448.	1.6	37
15	Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2018, 55, 2350-2361.	1.9	53
16	Culture conditions influence satellite cell activation and survival of single myofibers. European Journal of Translational Myology, 2018, 28, 7567.	0.8	14
17	Increasing autophagy does not affect neurogenic muscle atrophy. European Journal of Translational Myology, 2018, 28, 7687.	0.8	12
18	HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors. Frontiers in Physiology, 2018, 9, 1387.	1.3	20

VIVIANA MORESI

#	Article	IF	CITATIONS
19	HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses. Skeletal Muscle, 2018, 8, 6.	1.9	32
20	Skeletal Muscle: A Significant Novel Neurohypophyseal Hormone-Secreting Organ. Frontiers in Physiology, 2018, 9, 1885.	1.3	12
21	Coordinated Actions of MicroRNAs with other Epigenetic Factors Regulate Skeletal Muscle Development and Adaptation. International Journal of Molecular Sciences, 2017, 18, 840.	1.8	65
22	Of faeces and sweat. How much a mouse is willing to run: having a hard time measuring spontaneous physical activity in different mouse sub-strains. European Journal of Translational Myology, 2017, 27, 6483.	0.8	11
23	Denervation does not induce muscle atrophy through oxidative stress. European Journal of Translational Myology, 2017, 27, 6406.	0.8	31
24	Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia. Stem Cells International, 2016, 2016, 1-9.	1.2	43
25	Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Scientific Reports, 2016, 6, 19781.	1.6	67
26	Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer. Scientific Reports, 2016, 6, 26991.	1.6	145
27	New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015, 7, 945.	1.3	26
28	Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling. Molecular Therapy, 2015, 23, 1003-1021.	3.7	33
29	Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 309-316.	0.9	50
30	Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. European Journal of Translational Myology, 2014, 24, .	0.8	16
31	Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. European Journal of Translational Myology, 2014, 24, 3790.	0.8	22
32	Substrains of Inbred Mice Differ in Their Physical Activity as a Behavior. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	24
33	Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 2012, 481, 511-515.	13.7	975
34	Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1649-1654.	3.3	117
35	Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4218-4223.	3.3	362
36	Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases. Cell, 2010, 143, 35-45.	13.5	377

VIVIANA MORESI

#	Article	IF	CITATIONS
37	MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice. Science, 2009, 326, 1549-1554.	6.0	692
38	Modulation of Caspase Activity Regulates Skeletal Muscle Regeneration and Function in Response to Vasopressin and Tumor Necrosis Factor. PLoS ONE, 2009, 4, e5570.	1.1	39
39	Tumor Necrosis Factor-α Inhibition of Skeletal Muscle Regeneration Is Mediated by a Caspase-Dependent Stem Cell Response. Stem Cells, 2008, 26, 997-1008.	1.4	65
40	Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration. Genesis, 2005, 43, 120-128.	0.8	113