Matthew C Fitzpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8096501/publications.pdf

Version: 2024-02-01

65 papers 6,886 citations

35 h-index 61 g-index

72 all docs 72 docs citations

times ranked

72

11625 citing authors

#	Article	IF	CITATIONS
1	Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 2012, 21, 481-497.	2.7	1,130
2	Climate Change and the Past, Present, and Future of Biotic Interactions. Science, 2013, 341, 499-504.	6.0	612
3	Space can substitute for time in predicting climate-change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9374-9379.	3. 3	551
4	Ecological genomics meets communityâ€level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecology Letters, 2015, 18, 1-16.	3.0	426
5	Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytologist, 2014, 204, 37-54.	3.5	361
6	The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation, 2009, 18, 2255-2261.	1.2	320
7	The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range?. Global Ecology and Biogeography, 2007, 16, 24-33.	2.7	300
8	Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 2007, 16, 640-649.	2.7	249
9	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	3.0	233
10	Climate change, plant migration, and range collapse in a global biodiversity hotspot: the <i>Banksia </i> (Proteaceae) of Western Australia. Global Change Biology, 2008, 14, 1337-1352.	4.2	196
11	Observer bias and the detection of lowâ€density populations. Ecological Applications, 2009, 19, 1673-1679.	1.8	182
12	Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131201.	1,2	145
13	Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 245-269.	3.8	140
14	MaxEnt versus MaxLike: empirical comparisons with ant species distributions. Ecosphere, 2013, 4, 1-15.	1.0	125
15	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	1.4	119
16	Modeling Species and Community Responses to Past, Present, and Future Episodes of Climatic and Ecological Change. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 343-368.	3.8	107
17	Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biology and Biochemistry, 2014, 76, 201-209.	4.2	92
18	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	1.9	87

#	Article	IF	CITATIONS
19	Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 2011, 34, 836-847.	2.1	81
20	Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nature Communications, 2019, 10, 614.	5.8	78
21	Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nature Climate Change, 2021, 11, 166-171.	8.1	69
22	Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. Scientific Data, 2016, 3, 160048.	2.4	68
23	Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Global Ecology and Biogeography, 2013, 22, 760-771.	2.7	67
24	Modeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North America. Ecological Applications, 2012, 22, 472-486.	1.8	64
25	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	1.2	58
26	Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum. Ecography, 2013, 36, 460-473.	2.1	57
27	Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Molecular Ecology Resources, 2021, 21, 2749-2765.	2.2	55
28	Controlled comparison of species- and community-level models across novel climates and communities. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152817.	1,2	50
29	A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Global Ecology and Biogeography, 2022, 31, 802-821.	2.7	50
30	Geography, topography, and history affect realizedâ€toâ€potential tree species richness patterns in Europe. Ecography, 2010, 33, 1070-1080.	2.1	49
31	How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability. Global Change Biology, 2018, 24, 3575-3586.	4.2	47
32	Golden Eagle fatalities and the continentalâ€scale consequences of local windâ€energy generation. Conservation Biology, 2017, 31, 406-415.	2.4	46
33	Distinct fungal successional trajectories following wildfire between soil horizons in a coldâ€temperate forest. New Phytologist, 2020, 227, 572-587.	3.5	41
34	Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). Forest Ecology and Management, 2011, 261, 1315-1324.	1,4	39
35	Modeling the spread of invasive species using dynamic network models. Biological Invasions, 2014, 16, 949-960.	1,2	39
36	Multiresponse algorithms for communityâ€level modelling: Review of theory, applications, and comparison to species distribution models. Methods in Ecology and Evolution, 2018, 9, 834-848.	2.2	39

#	Article	IF	CITATIONS
37	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	4.2	39
38	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	1.5	37
39	Potential Stream Density in Mid-Atlantic U.S. Watersheds. PLoS ONE, 2013, 8, e74819.	1.1	37
40	Ecological boundary detection using Bayesian areal wombling. Ecology, 2010, 91, 3448-3455.	1.5	36
41	The Past, Present, and Future of the Hemlock Woolly Adelgid (Adelges tsugae) and Its Ecological Interactions with Eastern Hemlock (Tsuga canadensis) Forests. Insects, 2018, 9, 172.	1.0	33
42	Seeing the forest for the trees: Assessing genetic offset predictions from gradient forest. Evolutionary Applications, 2022, 15, 403-416.	1.5	32
43	INSECTS MEDIATE THE EFFECTS OF PROPAGULE SUPPLY AND RESOURCE AVAILABILITY ON A PLANT INVASION. Ecology, 2007, 88, 2383-2391.	1.5	30
44	Geographic origins and population genetics of bats killed at windâ€energy facilities. Ecological Applications, 2016, 26, 1381-1395.	1.8	28
45	Data sets matter, but so do evolution and ecology. Global Ecology and Biogeography, 2008, 17, 562-565.	2.7	25
46	Influence of Range Position on Locally Adaptive Gene–Environment Associations in Populus Flowering Time Genes. Journal of Heredity, 2018, 109, 47-58.	1.0	20
47	Wholeâ€exome sequencing reveals a longâ€term decline in effective population size of red spruce (<i>Picea rubens</i>). Evolutionary Applications, 2020, 13, 2190-2205.	1.5	19
48	Comment on "Genomic signals of selection predict climate-driven population declines in a migratory birdâ€. Science, 2018, 361, .	6.0	19
49	Dispersal traits linked to range size through range location, not dispersal ability, in Western Australian angiosperms. Global Ecology and Biogeography, 2009, 18, 596-606.	2.7	16
50	Close agreement between pollenâ€based and forest inventoryâ€based models of vegetation turnover. Global Ecology and Biogeography, 2015, 24, 905-916.	2.7	16
51	Estimating tree phenology from high frequency tree movement data. Agricultural and Forest Meteorology, 2018, 263, 217-224.	1.9	14
52	The ODMAP protocol: a new tool for standardized reporting that could revolutionize species distribution modeling. Ecography, 2021, 44, 1067-1070.	2.1	13
53	Advancing interpretation of stable isotope assignment maps: comparing and summarizing origins of known-provenance migratory bats. Animal Migration, 2020, 7, 27-41.	1.1	13
54	Simulating the dispersal of hemlock woolly adelgid in the temperate forest understory. Entomologia Experimentalis Et Applicata, 2011, 141, 216-223.	0.7	12

#	Article	IF	CITATIONS
55	Contemporary range position predicts the rangeâ€wide pattern of genetic diversity in balsam poplar (<i>Populus balsamifera</i> L.). Journal of Biogeography, 2020, 47, 1246-1257.	1.4	12
56	Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce (<i>Picea rubens</i> Sarg.). Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210008.	1.8	10
57	Ecological niche models and the geography of biological invasions: a review and a novel application. , 2005, , 45-60.		9
58	Intraspecific Variation in <i>Tsuga canadensis</i> Foliar Chemistry. Northeastern Naturalist, 2009, 16, 585-594.	0.1	8
59	Fieldâ€measured variables outperform derived alternatives in Maryland stream biodiversity models. Diversity and Distributions, 2017, 23, 1054-1066.	1.9	6
60	What evidence exists for landbird species-environment relationships in eastern temperate and boreal forests of North America? A systematic map protocol. Environmental Evidence, 2019, 8, .	1.1	5
61	The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range?. Global Ecology and Biogeography, 2006, .	2.7	3
62	Every Species Is an Insect (or Nearly So): On Insects, Climate Change, Extinction, and the Biological Unknown., 2012,, 217-237.		3
63	Estimating the exposure of carnivorous plants to rapid climatic change. , 2018, , .		1
64	Characterizing ecosystem response to climate variability. Global Ecology and Biogeography, 2005, 14, 600-601.	2.7	0
65	Relationships between climate and phylogenetic community structure of fossil pollen assemblages are not constant during the last deglaciation. PLoS ONE, 2021, 16, e0240957.	1.1	O