Péter R Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809640/publications.pdf

Version: 2024-02-01

489802 355658 1,534 49 18 38 citations g-index h-index papers 49 49 49 1579 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. Journal of Chemical Theory and Computation, 2021, 17, 860-878.	2.3	32
2	Linear-Scaling Open-Shell MP2 Approach: Algorithm, Benchmarks, and Large-Scale Applications. Journal of Chemical Theory and Computation, 2021, 17, 2886-2905.	2.3	16
3	Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12, 3927.	5.8	57
4	Methylâ€Induced Polarization Destabilizes the Noncovalent Interactions of Nâ€Methylated Lysines. Chemistry - A European Journal, 2021, 27, 11005-11014.	1.7	5
5	Size-consistent explicitly correlated triple excitation correction. Journal of Chemical Physics, 2021, 155, 034107.	1.2	19
6	Basis set truncation corrections for improved frozen natural orbital CCSD(T) energies. Molecular Physics, $2021,119,.$	0.8	7
7	Integral-Direct and Parallel Implementation of the CCSD(T) Method: Algorithmic Developments and Large-Scale Applications. Journal of Chemical Theory and Computation, 2020, 16, 366-384.	2.3	46
8	Transferable interactions of Li+ and Mg2+ ions in polarizable models. Journal of Chemical Physics, 2020, 153, 104113.	1,2	11
9	Improved description of ligand polarization enhances transferability of ion–ligand interactions. Journal of Chemical Physics, 2020, 153, 094115.	1.2	11
10	The MRCC program system: Accurate quantum chemistry from water to proteins. Journal of Chemical Physics, 2020, 152, 074107.	1,2	264
11	Effects of disinfection and sterilization on the dimensional changes and mechanical properties of 3D printed surgical guides for implant therapy – pilot study. BMC Oral Health, 2020, 20, 19.	0.8	44
12	Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. Journal of Chemical Theory and Computation, 2019, 15, 5275-5298.	2.3	112
13	Reduced-Scaling Correlation Methods for the Excited States of Large Molecules: Implementation and Benchmarks for the Second-Order Algebraic-Diagrammatic Construction Approach. Journal of Chemical Theory and Computation, 2019, 15, 6111-6126.	2.3	18
14	Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments. Journal of Chemical Physics, 2018, 148, .	1,2	37
15	Direction-dependent secondary bonds and their stepwise melting in a uracil-based molecular crystal studied by infrared spectroscopy and theoretical modeling. Chemical Physics Letters, 2018, 691, 163-168.	1.2	0
16	Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. Journal of Chemical Theory and Computation, 2018, 14, 4193-4215.	2.3	94
17	Dual Basis Set Approach for Density Functional and Wave Function Embedding Schemes. Journal of Chemical Theory and Computation, 2018, 14, 4600-4615.	2.3	29
18	Investigation of the mechanical and chemical characteristics of nanotubular and nano-pitted anodic films on grade 2 titanium dental implant materials. Materials Science and Engineering C, 2017, 78, 69-78.	3.8	24

#	Article	IF	Citations
19	Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions. Journal of Chemical Physics, 2017, 146, 194102.	1.2	47
20	Stereocontrol in Diphenylprolinol Silyl Ether Catalyzed Michael Additions: Steric Shielding or Curtin–Hammett Scenario?. Journal of the American Chemical Society, 2017, 139, 17052-17063.	6.6	29
21	Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. Journal of Chemical Physics, 2017, 146, 214106.	1.2	70
22	Exact density functional and wave function embedding schemes based on orbital localization. Journal of Chemical Physics, 2016, 145, .	1.2	80
23	An Integral-Direct Linear-Scaling Second-Order Møller–Plesset Approach. Journal of Chemical Theory and Computation, 2016, 12, 4897-4914.	2.3	72
24	Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes. Journal of Physical Chemistry A, 2016, 120, 5527-5538.	1.1	9
25	Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems. Journal of Chemical Theory and Computation, 2015, 11, 1027-1036.	2.3	62
26	Novel orthogonalization and biorthogonalization algorithms. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	7
27	Vibrational optical activity of chiral carbon nanoclusters treated by a generalized π-electron method. Journal of Chemical Physics, 2014, 140, 044112.	1.2	5
28	Limitations of the rotor voltage of doubly fed induction generator in shaping the slip-torque characteristics. , 2014, , .		0
29	Theoretical vibrational optical activity of chiral carbon nanoparticles: Fullerenes and carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2451-2456.	0.7	6
30	Perspectives of APSGâ€based multireference perturbation theories. International Journal of Quantum Chemistry, 2014, 114, 1048-1052.	1.0	39
31	Unitary perturbation theory applied to multiconfigurational reference functions. International Journal of Quantum Chemistry, 2013, 113, 230-238.	1.0	8
32	Control of wind power. , 2013, , .		3
33	Chemical etching of nitinol stents. Acta of Bioengineering and Biomechanics, 2013, 15, 3-8.	0.2	16
34	Laser Cutting of Small Diameter Nitinol Tube. Materials Science Forum, 2012, 729, 460-463.	0.3	2
35	Development of Nitinol Stents: Electropolishing Experiments. Materials Science Forum, 2012, 729, 436-441.	0.3	3
36	Development of Nitinol Stents: Etching Experiments. Materials Science Forum, 2012, 729, 240-245.	0.3	1

#	Article	IF	CITATIONS
37	Catalytic Hydrogenation with Frustrated Lewis Pairs: Selectivity Achieved by Sizeâ€Exclusion Design of Lewis Acids. Chemistry - A European Journal, 2012, 18, 574-585.	1.7	151
38	Mayer's orthogonalization: relation to the Gram-Schmidt and Löwdin's symmetrical scheme. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	12
39	The role of ultimate elongation in the determination of valid ligament range of essential work of fracture tests. Journal of Materials Science, 2012, 47, 2228-2233.	1.7	12
40	Spin Component Scaling in Multiconfiguration Perturbation Theory. Journal of Physical Chemistry A, 2011, 115, 523-534.	1.1	13
41	Essential work of fracture study of polymers: a novel criterion for the validation of tested ligament range. Journal of Materials Science, 2011, 46, 7901-7904.	1.7	6
42	Characterization of the fracture properties of aragonite―and calcite―illed poly(ε aprolactone) by the essential work of fracture method. Journal of Applied Polymer Science, 2011, 120, 2587-2595.	1.3	9
43	Injection Molding of Degradable Interference Screws into Polymeric Mold. Materials Science Forum, 2010, 659, 73-77.	0.3	15
44	Polycyclic aromatic hydrocarbons (PAHs) in surface waters of Ráckevei-Soroksári Danube Branch, Hungary. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 231-240.	0.9	11
45	Monofluorinated Polycyclic Aromatic Hydrocarbons: Surrogate Standards for HPLC Analysis of Surface Water and Sediment Samples. Journal of Liquid Chromatography and Related Technologies, 2007, 31, 240-249.	0.5	2
46	Investigating the Time Dependent Behavior of Thermoplastic Polymers under Tensile Load. Macromolecular Symposia, 2006, 239, 176-181.	0.4	4
47	Octylphenol and Nonylphenol in Surface Water of Ráckevei-Soroksári Danube Branch, Hungary. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1679-1688.	0.9	14
48	Stent Retention Measurement. Materials Science Forum, 0, 659, 283-288.	0.3	0
49	Chemical Etching of Ultrafine Grained Titanium Surfaces to Optimise Cell Attachment. Materials Science Forum, 0, 812, 265-270.	0.3	O