
Amanda McCann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8096283/publications.pdf

Version: 2024-02-01

AMANDA MCCANN

#	Article	IF	CITATIONS
1	The potential role of cofilin-1 in promoting triple negative breast cancer (TNBC) metastasis via the extracellular vesicles (EVs). Translational Oncology, 2022, 15, 101247.	1.7	12
2	Has the National Fall in Smoking Rates in Ireland Been Replicated in Cancer Patients? A 5-Year Report. International Journal of Environmental Research and Public Health, 2022, 19, 2348.	1.2	2
3	A comparative analysis of extracellular vesicles (EVs) from human and feline plasma. Scientific Reports, 2022, 12, .	1.6	7
4	<i>N</i> -Linked glycosylation profiles of therapeutic induced senescent (TIS) triple negative breast cancer cells (TNBC) and their extracellular vesicle (EV) progeny. Molecular Omics, 2021, 17, 72-85.	1.4	12
5	5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clinical Epigenetics, 2021, 13, 34.	1.8	11
6	The role of von Willebrand factor in breast cancer metastasis. Translational Oncology, 2021, 14, 101033.	1.7	18
7	"Could you give us an idea on what we are all doing here?―the Patient Voice in Cancer Research (PVCR) starting the journey of involvement in Ireland. Research Involvement and Engagement, 2021, 7, 63.	1.1	4
8	Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia, 2020, 34, 196-209.	3.3	48
9	Too MAD or not MAD enough: The duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Letters, 2020, 469, 11-21.	3.2	18
10	Exosomes in triple negative breast cancer: Garbage disposals or Trojan horses?. Cancer Letters, 2020, 473, 90-97.	3.2	43
11	Exosomes as Biomarkers of Human and Feline Mammary Tumours; A Comparative Medicine Approach to Unravelling the Aggressiveness of TNBC. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188431.	3.3	15
12	Hypoxia Alters Epigenetic and N-Glycosylation Profiles of Ovarian and Breast Cancer Cell Lines in-vitro. Frontiers in Oncology, 2020, 10, 1218.	1.3	20
13	HDAC6 Degradation Inhibits the Growth of High-Grade Serous Ovarian Cancer Cells. Cancers, 2020, 12, 3734.	1.7	22
14	Circulating Melanoma-Derived Extracellular Vesicles: Impact on Melanoma Diagnosis, Progression Monitoring, and Treatment Response. Pharmaceuticals, 2020, 13, 475.	1.7	13
15	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS ONE, 2020, 15, e0243715.	1.1	7
16	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		0
17	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		Ο
18	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		0

Amanda McCann

#	Article	IF	CITATIONS
19	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		Ο
20	Clarifying the mechanisms and resources that enable the reciprocal involvement of seldom heard groups in health and social care research: A collaborative rapid realist review process. Health Expectations, 2019, 22, 298-306.	1.1	39
21	Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers, 2019, 11, 66.	1.7	73
22	Overcoming multiple myeloma drug resistance in the era of cancer â€~omics'. Leukemia and Lymphoma, 2018, 59, 542-561.	0.6	34
23	BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer. Oncotarget, 2018, 9, 15673-15690.	0.8	22
24	Resident bacteria in breast cancer tissue: pathogenic agents or harmless commensals?. Discovery Medicine, 2018, 26, 93-102.	0.5	8
25	A Protocol for Improved Precision and Increased Confidence in Nanoparticle Tracking Analysis Concentration Measurements between 50 and 120 nm in Biological Fluids. Frontiers in Cardiovascular Medicine, 2017, 4, 68.	1.1	48
26	The association between MAD2 and prognosis in cancer: a systematic review and meta-analyses. Oncotarget, 2017, 8, 102223-102234.	0.8	9
27	Epigenetic regulation of glycosylation and the impact on chemo-resistance in breast and ovarian cancer. Epigenetics, 2016, 11, 845-857.	1.3	39
28	The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clinical, 2015, 3, 257-275.	4.1	293
29	Anxiety is associated with higher levels of global DNA methylation and altered expression of epigenetic and interleukin-6 genes. Psychiatric Genetics, 2015, 25, 71-78.	0.6	72
30	Overexpression of the microRNA miRâ€433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Medicine, 2015, 4, 745-758.	1.3	132
31	The MyD88+ Phenotype Is an Adverse Prognostic Factor in Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e100816.	1.1	36
32	Raman spectroscopy and SERS analysis of ovarian tumour derived exosomes (TEXs): a preliminary study. , 2014, , .		6
33	Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells. BMC Ophthalmology, 2014, 14, 153.	0.6	22
34	Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Human Molecular Genetics, 2014, 23, 2176-2188.	1.4	235
35	Spindle assembly checkpoint protein expression correlates with cellular proliferation and shorter time to recurrence in ovarian cancer. Human Pathology, 2014, 45, 1509-1519.	1.1	16
36	Low MAD2 protein expression is a predictor of poor outcome after chemotherapy and radiotherapy in oestrogen receptor negative breast cancer patients. European Journal of Surgical Oncology, 2013, 39, S76.	0.5	0

#	Article	lF	CITATIONS
37	Commentary on paper: 5-Aza-2′-deoxycytidine increases sialyl Lewis X on MUC1 by stimulating β-galactoside:α2,3-sialyltransferase 6 gene (Chachadi et al.). International Journal of Biochemistry and Cell Biology, 2012, 44, 737.	1.2	2
38	Low MAD2 expression levels associate with reduced progressionâ€free survival in patients with highâ€grade serous epithelial ovarian cancer. Journal of Pathology, 2012, 226, 746-755.	2.1	64
39	Homocysteine levels impact directly on epigenetic reprogramming in astrocytes. Neurochemistry International, 2011, 58, 833-838.	1.9	13
40	Epigenetic Effect of Cadmium on Global De Novo DNA Hypomethylation in the Cadmium-Induced Ventral Body Wall Defect (VBWD) in the Chick Model. Toxicological Sciences, 2011, 120, 475-480.	1.4	64
41	Alpha T-catenin (CTNNA3): a gene in the hand is worth two in the nest. Cellular and Molecular Life Sciences, 2011, 68, 2493-2498.	2.4	18
42	5-AZA-2'-deoxycytidine induced demethylation influences <i>N</i> -glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics, 2011, 6, 1362-1372.	1.3	63
43	The Epithelium—Molecular Landscaping for an Interactive Barrier. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-1.	3.0	7
44	MAD2 downregulation in hypoxia is independent of promoter hypermethylation. Cell Cycle, 2010, 9, 2928-2937.	1.3	9
45	Epigenetics: The epicenter of the hypoxic response. Epigenetics, 2010, 5, 293-296.	1.3	157
46	MAD2 downregulation in hypoxia is independent of promoter hypermethylation. Cell Cycle, 2010, 9, 2856-65.	1.3	7
47	Generation of an epigenetic signature by chronic hypoxia in prostate cells. Human Molecular Genetics, 2009, 18, 3594-3604.	1.4	94
48	Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro. British Journal of Cancer, 2009, 101, 1900-1908.	2.9	44
49	Urinary insulinâ€like growth factor 2 identifies the presence of urothelial carcinoma of the bladder. BJU International, 2009, 103, 694-697.	1.3	10
50	Progesterone receptor B (PRB) promoter hypermethylation in sporadic breast cancer. Breast Cancer Research and Treatment, 2008, 111, 45-53.	1.1	17
51	Taxanes, microtubules and chemoresistant breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1785, 96-132.	3.3	313
52	Small Interfering RNAs Induce Macrophage Migration Inhibitory Factor Production and Proliferation in Breast Cancer Cells via a Double-Stranded RNA-Dependent Protein Kinase-Dependent Mechanism. Journal of Immunology, 2008, 180, 7125-7133.	0.4	32
53	Recurrence of Urothelial Carcinoma of the Bladder: A Role for Insulin-Like Growth Factor-II Loss of Imprinting and Cytoplasmic E-Cadherin Immunolocalization. Clinical Cancer Research, 2008, 14, 6829-6838.	3.2	11
54	Molecular Basis for Estrogen Receptor Deficiency in BRCA1-Linked Breast Cancer. Journal of the National Cancer Institute, 2007, 99, 1683-1694.	3.0	183

Amanda McCann

#	Article	IF	CITATIONS
55	CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. International Journal of Cancer, 2007, 120, 1434-1443.	2.3	98
56	Alpha-T-catenin (CTNNA3) displays tumour specific monoallelic expression in urothelial carcinoma of the bladder. Genes Chromosomes and Cancer, 2007, 46, 587-593.	1.5	12
57	Imprinted expression of the canine <i>IGF2R</i> , in the absence of an antiâ€sense transcript or promoter methylation. Evolution & Development, 2007, 9, 579-589.	1.1	22
58	Gain of imprinting of SLC22A18 sense and antisense transcripts in human breast cancer. Genomics, 2006, 88, 12-17.	1.3	34
59	A Multi-Centre Investigation Towards Reaching a Consensus on the Immunohistochemical Detection of ERβ in Archival Formalin-ï¬xed Paraffin Embedded Human Breast Tissue. Breast Cancer Research and Treatment, 2005, 92, 287-293.	1.1	45
60	Elevated expression and altered processing of fibulin-1 protein in human breast cancer. British Journal of Cancer, 2003, 88, 871-878.	2.9	68
61	Promoter switch: a novel mechanism causing biallelic PEG1/MEST expression in invasive breast cancer. Human Molecular Genetics, 2002, 11, 1449-1453.	1.4	44
62	TheMASProto-oncogene Is Imprinted in Human Breast Tissue. Genomics, 1997, 46, 509-512.	1.3	24
63	Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status. British Journal of Cancer, 1995, 71, 981-985.	2.9	100
64	Prognostic significance of microvessel density in lymph node negative breast carcinoma. Human Pathology, 1995, 26, 1181-1184.	1.1	113
65	Argyrophylic nucleolar organiser regions (AgNOR's) as a prognostic indicator in breast carcinoma. Irish Journal of Medical Science, 1992, 161, 112-115.	0.8	5
66	Irish association for cancer research. Irish Journal of Medical Science, 1991, 160, 116-126.	0.8	0
67	c-erbB-2 oncoprotein expression in primary human tumors. Cancer, 1990, 65, 88-92.	2.0	137
68	Non-M CK — a practical measure of creatine kinase isoenzymes in cancer patients. Clinica Chimica Acta, 1990, 187, 309-315.	0.5	8
69	c-erbB-2 oncoprotein expression in malignant and nonmalignant breast tissue. Irish Journal of Medical Science, 1989, 158, 137-140.	0.8	12
70	What are the mechanisms that enable the reciprocal involvement of seldom heard groups in health and social care research? A rapid realist review protocol. HRB Open Research, 0, 1, 7.	0.3	13