
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8096204/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 2012, 484, 49-54.	27.8	1,141
2	Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Climate of the Past, 2007, 3, 261-277.	3.4	1,089
3	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	3.8	935
4	Transient Simulation of Last Deglaciation with a New Mechanism for BÃ,lling-AllerÃ,d Warming. Science, 2009, 325, 310-314.	12.6	843
5	Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science, 2006, 311, 1751-1753.	12.6	832
6	Evaluation of climate models using palaeoclimatic data. Nature Climate Change, 2012, 2, 417-424.	18.8	779
7	Recent Warming Reverses Long-Term Arctic Cooling. Science, 2009, 325, 1236-1239.	12.6	585
8	Last Glacial Maximum and Holocene Climate in CCSM3. Journal of Climate, 2006, 19, 2526-2544.	3.2	518
9	Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews, 2014, 83, 115-128.	3.0	452
10	Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1134-42.	7.1	422
11	Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise. Science, 2006, 311, 1747-1750.	12.6	400
12	Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model. Bulletin of the American Meteorological Society, 2016, 97, 735-754.	3.3	382
13	The Sensitivity of the African-Asian Monsoonal Climate to Orbital Parameter Changes for 9000 Years B.P. in a Low-Resolution General Circulation Model. Journals of the Atmospheric Sciences, 1982, 39, 1177-1188.	1.7	363
14	Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past, 2007, 3, 279-296.	3.4	349
15	Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geoscientific Model Development, 2011, 4, 33-45.	3.6	349
16	The Holocene temperature conundrum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3501-5.	7.1	344
17	The time-transgressive termination of the African Humid Period. Nature Geoscience, 2015, 8, 140-144.	12.9	344
18	Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3713-3718.	7.1	323

#	Article	IF	CITATIONS
19	Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361, 920-923.	12.6	307
20	Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate of the Past, 2013, 9, 191-209.	3.4	289
21	Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13415-13419.	7.1	278
22	Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology, 2013, 41, 1023-1026.	4.4	271
23	Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13288-13293.	7.1	271
24	Improved dust representation in the Community Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2014, 6, 541-570.	3.8	253
25	Past climates inform our future. Science, 2020, 370, .	12.6	253
26	Noâ€enalog climates and shifting realized niches during the late quaternary: implications for 21stâ€eentury predictions by species distribution models. Global Change Biology, 2012, 18, 1698-1713.	9.5	243
27	Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Climate Dynamics, 2006, 26, 513-529.	3.8	240
28	Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model Development, 2012, 5, 185-191.	3.6	238
29	A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dynamics, 2003, 20, 127-151.	3.8	236
30	Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature, 2014, 515, 550-553.	27.8	228
31	Greenland temperature response to climate forcing during the last deglaciation. Science, 2014, 345, 1177-1180.	12.6	226
32	Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics, 2004, 22, 157-182.	3.8	203
33	EPICA Dome C record of glacial and interglacial intensities. Quaternary Science Reviews, 2010, 29, 113-128.	3.0	202
34	Last Millennium Climate and Its Variability in CCSM4. Journal of Climate, 2013, 26, 1085-1111.	3.2	198
35	Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	197
36	The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Climate of the Past, 2007, 3, 51-64.	3.4	192

#	Article	IF	CITATIONS
37	Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 2013, 494, 81-85.	27.8	186
38	Factors that affect the amplitude of El Nino in global coupled climate models. Climate Dynamics, 2001, 17, 515-526.	3.8	182
39	Coupled Climate Simulation of the Evolution of Global Monsoons in the Holocene*. Journal of Climate, 2003, 16, 2472-2490.	3.2	179
40	Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Climate Dynamics, 2003, 20, 663-688.	3.8	172
41	Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophysical Research Letters, 2007, 34, .	4.0	172
42	Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science, 2014, 346, 1223-1227.	12.6	172
43	Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Climate Change, 2012, 2, 365-371.	18.8	171
44	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	3.6	171
45	Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea–surface temperatures and pollen-based reconstructions. Quaternary Science Reviews, 2006, 25, 2082-2102.	3.0	170
46	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). Geoscientific Model Development, 2010, 3, 227-242.	3.6	168
47	Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature, 1997, 385, 804-807.	27.8	167
48	Palaeoclimate constraints on the impact of 2 ŰC anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	12.9	166
49	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	3.6	164
50	PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography, 2017, 40, 1348-1358.	4.5	163
51	Sensitivity to Glacial Forcing in the CCSM4. Journal of Climate, 2013, 26, 1901-1925.	3.2	153
52	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2). Geoscientific Model Development, 2011, 4, 571-577.	3.6	151
53	Climate response to large, high″atitude and low″atitude volcanic eruptions in the Community Climate System Model. Journal of Geophysical Research, 2009, 114, .	3.3	147
54	Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Climate of the Past, 2013, 9, 935-953.	3.4	146

4

#	Article	IF	CITATIONS
55	Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quaternary Science Reviews, 2014, 103, 116-133.	3.0	146
56	Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nature Geoscience, 2010, 3, 118-121.	12.9	140
57	The role of ocean thermal expansion in Last Interglacial sea level rise. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	140
58	"El Niño Like―Hydroclimate Responses to Last Millennium Volcanic Eruptions. Journal of Climate, 2016, 29, 2907-2921.	3.2	138
59	The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 2017, 10, 4035-4055.	3.6	137
60	Causes of early Holocene desertification in arid central Asia. Climate Dynamics, 2012, 38, 1577-1591.	3.8	136
61	A multi-model assessment of last interglacial temperatures. Climate of the Past, 2013, 9, 699-717.	3.4	134
62	Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature Climate Change, 2013, 3, 969-974.	18.8	132
63	The Community Climate System Model. Bulletin of the American Meteorological Society, 2001, 82, 2357-2376.	3.3	131
64	A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum. Climate Dynamics, 2009, 32, 799-815.	3.8	126
65	The sensitivity of the climate response to the magnitude and location of freshwater forcing: last glacial maximum experiments. Quaternary Science Reviews, 2010, 29, 56-73.	3.0	124
66	Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 2013, 3, 2013.	3.3	124
67	How warm was the last interglacial? New model–data comparisons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130097.	3.4	124
68	The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Climate of the Past, 2016, 12, 663-675.	3.4	119
69	Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Climate Dynamics, 2011, 37, 2373-2387.	3.8	118
70	ENSO's Changing Influence on Temperature, Precipitation, and Wildfire in a Warming Climate. Geophysical Research Letters, 2018, 45, 9216-9225.	4.0	118
71	The Connected Isotopic Water Cycle in the Community Earth System Model Version 1. Journal of Advances in Modeling Earth Systems, 2019, 11, 2547-2566.	3.8	111
72	The Continuum of Hydroclimate Variability in Western North America during the Last Millennium. Journal of Climate, 2013, 26, 5863-5878.	3.2	106

#	Article	IF	CITATIONS
73	Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Climate of the Past, 2015, 11, 869-903.	3.4	104
74	A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Climate Dynamics, 2005, 25, 777-800.	3.8	103
75	Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1822-1826.	7.1	101
76	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	12.6	98
77	Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geoscientific Model Development, 2015, 8, 3621-3637.	3.6	95
78	Large-scale features and evaluation of the PMIP4-CMIP6 <i>midHolocene</i> simulations. Climate of the Past, 2020, 16, 1847-1872.	3.4	94
79	The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 2020, 16, 2095-2123.	3.4	93
80	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	3.6	90
81	Younger Dryas cooling and the Greenland climate response to CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11101-11104.	7.1	85
82	A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature, 2014, 513, 224-228.	27.8	84
83	Modern and Last Glacial Maximum eolian sedimentation patterns in the Atlantic Ocean interpreted from sediment iron oxide content. Paleoceanography, 1995, 10, 493-507.	3.0	83
84	The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies. Paleoceanography, 2011, 26, .	3.0	77
85	The climate response of the Indoâ€Pacific warm pool to glacial sea level. Paleoceanography, 2016, 31, 866-894.	3.0	76
86	Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Climate of the Past, 2021, 17, 63-94.	3.4	76
87	Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6417-6422.	7.1	75
88	El Niño/La Niña and Sahel precipitation during the Middle Holocene. Geophysical Research Letters, 1999, 26, 87-90.	4.0	74
89	Glacial changes in tropical climate amplified by the Indian Ocean. Science Advances, 2018, 4, eaat9658.	10.3	74
90	Climate Sensitivity of Moderate- and Low-Resolution Versions of CCSM3 to Preindustrial Forcings. Journal of Climate, 2006, 19, 2567-2583.	3.2	73

#	Article	IF	CITATIONS
91	Regional and global forcing of glacier retreat during the last deglaciation. Nature Communications, 2015, 6, 8059.	12.8	71
92	Reduced ENSO variability at the LGM revealed by an isotopeâ€enabled Earth system model. Geophysical Research Letters, 2017, 44, 6984-6992.	4.0	71
93	High climate sensitivity in CMIP6 model not supported by paleoclimate. Nature Climate Change, 2020, 10, 378-379.	18.8	71
94	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	3.4	71
95	Response of Thermohaline Circulation to Freshwater Forcing under Present-Day and LGM Conditions. Journal of Climate, 2008, 21, 2239-2258.	3.2	70
96	Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nature Climate Change, 2020, 10, 244-248.	18.8	70
97	Mid-Holocene NAO: A PMIP2 model intercomparison. Geophysical Research Letters, 2005, 32, .	4.0	69
98	Pliocene Warmth Consistent With Greenhouse Gas Forcing. Geophysical Research Letters, 2019, 46, 9136-9144.	4.0	69
99	Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Science Advances, 2021, 7, .	10.3	66
100	Simulating the mid-Pliocene Warm Period with the CCSM4 model. Geoscientific Model Development, 2013, 6, 549-561.	3.6	62
101	Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, 2015, 28, 7741-7763.	3.2	62
102	Abrupt BÃ,lling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophysical Research Letters, 2016, 43, 9130-9137.	4.0	62
103	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	12.6	61
104	Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 2013, 9, 2085-2099.	3.4	60
105	Tropical Pacific Variability in the NCAR Climate System Model. Journal of Climate, 2001, 14, 3587-3607.	3.2	59
106	Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14348-14352.	7.1	59
107	Evaluating the dominant components of warming in Pliocene climate simulations. Climate of the Past, 2014, 10, 79-90.	3.4	58
108	The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 415, 3-13.	2.3	58

#	Article	IF	CITATIONS
109	Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum. Ecography, 2013, 36, 460-473.	4.5	57
110	Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 2020, 16, 1777-1805.	3.4	56
111	Water isotopes during the Last Glacial Maximum: New general circulation model calculations. Journal of Geophysical Research, 2008, 113, .	3.3	54
112	Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways. Geophysical Research Letters, 2017, 44, 957-964.	4.0	53
113	Lessons from a high-CO ₂ world: an ocean view from  â^1⁄4 3Â years ago. Climate of the Past, 2020, 16, 1599-1615.	mjllion 3.4	52
114	Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. Climate of the Past, 2013, 9, 1495-1504.	3.4	50
115	Interpreting Precessionâ€Driven δ ¹⁸ 0 Variability in the South Asian Monsoon Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5927-5946.	3.3	49
116	The cause of Late Cretaceous cooling: A multimodel-proxy comparison. Geology, 2016, 44, 963-966.	4.4	48
117	Tropical cooling at the last glacial maximum and extratropical ocean ventilation1. Geophysical Research Letters, 2002, 29, 48-1-48-4.	4.0	47
118	The ice age ecologist: testing methods for reserve prioritization during the last global warming. Global Ecology and Biogeography, 2013, 22, 289-301.	5.8	47
119	Climate Variability, Volcanic Forcing, and Last Millennium Hydroclimate Extremes. Journal of Climate, 2018, 31, 4309-4327.	3.2	47
120	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	6.2	47
121	Agreement between reconstructed and modeled boreal precipitation of the Last Interglacial. Science Advances, 2019, 5, eaax7047.	10.3	46
122	Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Climate of the Past, 2013, 9, 955-968.	3.4	44
123	Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2108124119.	7.1	42
124	Evaluation of coupled ocean–atmosphere simulations of the mid-Holocene using palaeovegetation data from the northern hemisphere extratropics. Climate Dynamics, 2008, 31, 871-890.	3.8	41
125	Equilibration and variability in a Last Glacial Maximum climate simulation with CCSM3. Geophysical Research Letters, 2009, 36, .	4.0	41
126	Rapid (10-yr) recovery of terrestrial productivity in a simulation study of the terminal Cretaceous impact event. Earth and Planetary Science Letters, 2001, 192, 137-144.	4.4	40

Bette L Ottoâ€[®]liesner

#	Article	IF	CITATIONS
127	A numerical study of the climate response to lowered Mediterranean Sea level during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279, 41-59.	2.3	40
128	Causes and Climatic Consequences of the Impact Winter at the Cretaceousâ€Paleogene Boundary. Geophysical Research Letters, 2020, 47, e60121.	4.0	40
129	Carbon isotopes in the ocean model of the Community Earth System Model (CESM1). Geoscientific Model Development, 2015, 8, 2419-2434.	3.6	39
130	True to Milankovitch: Glacial Inception in the New Community Climate System Model. Journal of Climate, 2012, 25, 2226-2239.	3.2	38
131	Second phase of paleoclimate modelling intercomparison project. Eos, 2005, 86, 264.	0.1	36
132	Sensitivity of the Northern Hemisphere climate system to extreme changes in Holocene Arctic sea ice. Quaternary Science Reviews, 2003, 22, 645-658.	3.0	35
133	Model support for forcing of the 8.2Âka event by meltwater from the Hudson Bay ice dome. Climate Dynamics, 2013, 41, 2855-2873.	3.8	35
134	LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?. Climate of the Past, 2013, 9, 1697-1714.	3.4	35
135	Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Climate of the Past, 2015, 11, 403-424.	3.4	35
136	Assessment of Equilibrium Climate Sensitivity of the Community Earth System Model Version 2 Through Simulation of the Last Glacial Maximum. Geophysical Research Letters, 2021, 48, e2020GL091220.	4.0	34
137	Tropical mountains and coal formation: A climate model study of the Westphalian (306 MA). Geophysical Research Letters, 1993, 20, 1947-1950.	4.0	33
138	PALEOCLIMATE: Toward Integrated Reconstruction of Past Climates. Science, 2003, 300, 589-590.	12.6	33
139	The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Climate Dynamics, 2011, 37, 1517-1532.	3.8	33
140	Towards a quantitative understanding of millennial-scale Antarctic warming events. Quaternary Science Reviews, 2010, 29, 74-85.	3.0	31
141	Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways. Earth and Planetary Science Letters, 2017, 466, 129-138.	4.4	31
142	Increased Climate Response and Earth System Sensitivity From CCSM4 to CESM2 in Midâ€Pliocene Simulations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002033.	3.8	30
143	Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. Earth and Planetary Science Letters, 2020, 537, 116164.	4.4	30
144	Modeling and Data Syntheses of Past Climates: Paleoclimate Modelling Intercomparison Project Phase II Workshop; Estes Park, Colorado, 15–19 September 2008. Eos, 2009, 90, 93.	0.1	29

#	Article	IF	CITATIONS
145	The amplifying influence of increased ocean stratification on a future year without a summer. Nature Communications, 2017, 8, 1236.	12.8	29
146	A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences. Climate of the Past, 2021, 17, 37-62.	3.4	29
147	Atlantic circulation change still uncertain. Nature Geoscience, 2022, 15, 165-167.	12.9	29
148	Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nature Communications, 2022, 13, 1306.	12.8	28
149	Global-Scale Energy and Freshwater Balance in Glacial Climate: A Comparison of Three PMIP2 LGM Simulations. Journal of Climate, 2008, 21, 5008-5033.	3.2	27
150	The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscientific Model Development, 2019, 12, 3649-3685.	3.6	26
151	LGM Paleoclimate Constraints Inform Cloud Parameterizations and Equilibrium Climate Sensitivity in CESM2. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	26
152	Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period. Scientific Reports, 2020, 10, 13458.	3.3	25
153	CO ₂ Increase Experiments Using the CESM: Relationship to Climate Sensitivity and Comparison of CESM1 to CESM2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002120.	3.8	25
154	Northern Hemisphere forcing of the last deglaciation in southern Patagonia. Geology, 2012, 40, 631-634.	4.4	24
155	The amplification of Arctic terrestrial surface temperatures by reduced sea-ice extent during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386, 59-67.	2.3	24
156	Volcanic Eruption Signatures in the Isotopeâ€Enabled Last Millennium Ensemble. Paleoceanography and Paleoclimatology, 2019, 34, 1534-1552.	2.9	24
157	Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes. Science Advances, 2021, 7, .	10.3	24
158	Understanding Diverse Model Projections of Future Extreme El Niño. Journal of Climate, 2021, 34, 449-464.	3.2	24
159	Global Hydrological Cycle Response to Rapid and Slow Global Warming. Journal of Climate, 2013, 26, 8781-8786.	3.2	23
160	Reconstruction of the South Atlantic Subtropical Dipole index for the past 12,000 years from surface temperature proxy. Scientific Reports, 2014, 4, 5291.	3.3	22
161	Evolution of moisture transport to the western U.S. during the last deglaciation. Geophysical Research Letters, 2016, 43, 3468-3477.	4.0	22
162	Evaluation of Arctic warming in mid-Pliocene climate simulations. Climate of the Past, 2020, 16, 2325-2341.	3.4	21

#	Article	IF	CITATIONS
163	Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.	3.4	21
164	Large sensitivity to freshwater forcing location in 8.2 ka simulations. Paleoceanography, 2014, 29, 930-945.	3.0	20
165	North Atlantic subsurface temperature response controlled by effective freshwater input in "Heinrich―events. Earth and Planetary Science Letters, 2020, 539, 116247.	4.4	20
166	Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.	3.4	20
167	Forced changes to twentieth century ENSO diversity in a last Millennium context. Climate Dynamics, 2019, 52, 7359-7374.	3.8	19
168	Global River Discharge and Floods in the Warmer Climate of the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL089375.	4.0	18
169	A numerical study of the South Atlantic circulation at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253, 509-528.	2.3	17
170	Speleothems of South American and Asian Monsoons Influenced by a Green Sahara. Geophysical Research Letters, 2020, 47, e2020GL089695.	4.0	16
171	Arctic sea ice simulation in the PlioMIP ensemble. Climate of the Past, 2016, 12, 749-767.	3.4	15
172	Contributions of aerosolâ€cloud interactions to midâ€Piacenzian seasonally sea iceâ€free Arctic Ocean. Geophysical Research Letters, 2019, 46, 9920-9929.	4.0	15
173	The Influence of Volcanic Aerosol Meridional Structure on Monsoon Responses over the Last Millennium. Geophysical Research Letters, 2019, 46, 12350-12359.	4.0	15
174	A Comparison of the CMIP6 <i>midHolocene</i> and <i>lig127k</i> Simulations in CESM2. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003957.	2.9	14
175	The mid-Piacenzian of the North Atlantic Ocean. Stratigraphy, 2019, 16, 119-144.	0.3	13
176	Deglacial variability of South China hydroclimate heavily contributed by autumn rainfall. Nature Communications, 2021, 12, 5875.	12.8	13
177	Paleoclimate Constraints on the Spatiotemporal Character of Past and Future Droughts. Journal of Climate, 2020, 33, 9883-9903.	3.2	13
178	Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions. Climate of the Past, 2014, 10, 269-291.	3.4	12
179	Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials. Quaternary Science Reviews, 2019, 219, 308-311.	3.0	12
180	StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales. Scientific Data, 2020, 7, 335.	5.3	12

#	Article	IF	CITATIONS
181	Termination 1 Millennialâ€Scale Rainfall Events Over the Sunda Shelf. Geophysical Research Letters, 2022, 49, .	4.0	11
182	Thermally-Forced Mean Mass Circulations in the Northern Hemisphere. Monthly Weather Review, 1982, 110, 916-932.	1.4	10
183	Terrestrial ecosystem responses to global environmental change across the Cretaceous-Tertiary boundary. Geophysical Research Letters, 2000, 27, 2149-2152.	4.0	10
184	Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ€Isotope Paleoclimate Records Using an Isotopeâ€Enabled Earth System Model. Geophysical Research Letters, 2017, 44, 12,501.	4.0	10
185	Climate Responses to the Splitting of a Supercontinent: Implications for the Breakup of Pangea. Geophysical Research Letters, 2019, 46, 6059-6068.	4.0	10
186	An Efficient Ice Sheet/Earth System Model Spinâ€up Procedure for CESM2â€CISM2: Description, Evaluation, and Broader Applicability. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001984.	3.8	10
187	Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 1777-1794.	3.4	10
188	Deglacial trends in Indo-Pacific warm pool hydroclimate in an isotope-enabled Earth system model and implications for isotope-based paleoclimate reconstructions. Quaternary Science Reviews, 2021, 270, 107188.	3.0	10
189	Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 2427-2450.	3.4	10
190	The science and strategy of the Past Global Changes (PAGES) project. Current Opinion in Environmental Sustainability, 2010, 2, 193-201.	6.3	9
191	The South Atlantic sub-tropical dipole mode since the last deglaciation and changes in rainfall. Climate Dynamics, 2021, 56, 109-122.	3.8	8
192	Intercomparison of Heat Fluxes in the South Atlantic. Part I: The Seasonal Cycle. Journal of Climate, 2003, 16, 706-714.	3.2	8
193	Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY. Climate of the Past, 2022, 18, 1047-1070.	3.4	8
194	A Numerical Study of the Impact of Greenhouse Gases on the South Atlantic Ocean Climatology. Climatic Change, 2004, 66, 163-189.	3.6	7
195	N ₂ O changes from the Last Glacial Maximum to the preindustrial – PartÂ2: terrestrial N ₂ O emissions and carbon–nitrogen cycle interactions. Biogeosciences, 2020, 17, 3511-3543.	3.3	7
196	Retreat and Regrowth of the Greenland Ice Sheet During the Last Interglacial as Simulated by the CESM2 ISM2 Coupled Climate–Ice Sheet Model. Paleoceanography and Paleoclimatology, 2021, 36, .	2.9	7
197	A Comparison of Several Meteorological Analysis Schemes over a Data-Rich Region. Monthly Weather Review, 1977, 105, 1083-1091.	1.4	6
198	The importance of Canadian Arctic Archipelago gateways for glacial expansion in Scandinavia. Nature Geoscience, 2022, 15, 482-488.	12.9	6

#	Article	IF	CITATIONS
199	Model–proxy comparison for overshoot phenomenon of Atlantic thermohaline circulation at BÃ,lling–AllerÃ,d. Science Bulletin, 2014, 59, 4510-4515.	1.7	5
200	South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age. Geosciences (Switzerland), 2019, 9, 299.	2.2	5
201	Model evidence for climatic impact of thermohaline circulation on China at the century scale. Science Bulletin, 2010, 55, 3215-3221.	1.7	4
202	Impact of North Atlantic – GIN Sea exchange on deglaciation evolution of the Atlantic Meridional Overturning Circulation. Climate of the Past, 2011, 7, 935-940.	3.4	4
203	Shallowing Glacial Antarctic Intermediate Water by Changes in Sea Ice and Hydrological Cycle. Geophysical Research Letters, 2021, 48, e2021GL094317.	4.0	4
204	African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	3
205	A Global Low-Order Spectral General Circulation Model. Part II: Diagnosis of the Seasonal Energetics. Journals of the Atmospheric Sciences, 1984, 41, 508-523.	1.7	2
206	The Effects of Topography on the Atmospheric Energetics in. a Low-Resolution General Circulation Model. Journals of the Atmospheric Sciences, 1986, 43, 1535-1543.	1.7	1
207	The sensitivity of numerical simulation to orography specification in the low resolution spectral model—Part I: The effects of orography on the atmospheric general circulation. Advances in Atmospheric Sciences, 1987, 4, 1-12.	4.3	1
208	The sensitivity of the numerical simulation to orography specification in the lowresolution spectral model—Part II: Impact of the smoothed orography and ripples on simulations. Advances in Atmospheric Sciences, 1987, 4, 145-155.	4.3	1
209	Testing Methods for Reconstructing Glacial Antarctic Circumpolar Current Transport in an Isotopeâ€Enabled Climate Model. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004183.	2.9	1
210	Vegetation and Warm Climates During the Late Cretaceous. The Paleontological Society Special Publications, 1996, 8, 404-404.	0.0	0
211	Isotopes of carbon, water and geotracers in paleoclimate research. Past Global Change Magazine, 2014, 22, 49-49.	0.1	0