Jingbo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8096185/publications.pdf Version: 2024-02-01

LINCRO WANC

#	Article	IF	CITATIONS
1	Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Materials Today, 2020, 34, 115-131.	8.3	77
2	Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO ₂ Management. ACS Sustainable Chemistry and Engineering, 2021, 9, 1073-1089.	3.2	53
3	The interactions and adsorption mechanisms of ternary heavy metals on boron nitride. Environmental Research, 2020, 183, 109240.	3.7	34
4	Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties. Water Research, 2016, 100, 326-336.	5.3	31
5	Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. Journal of Membrane Science, 2020, 604, 117998.	4.1	31
6	Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes. Environmental Science & Technology, 2017, 51, 2295-2303.	4.6	24
7	Conducting thermal energy to the membrane/water interface for the enhanced desalination of hypersaline brines using membrane distillation. Journal of Membrane Science, 2021, 626, 119188.	4.1	21
8	Scalable fabrication of anti-biofouling membranes through 2-aminoimidazole incorporation during polyamide casting. Journal of Membrane Science, 2019, 579, 151-161.	4.1	20
9	Grafting of bioactive 2-aminoimidazole into active layer makes commercial RO/NF membranes anti-biofouling. Journal of Membrane Science, 2018, 556, 85-97.	4.1	17
10	Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes. Environmental Science & Technology, 2021, 55, 3250-3259.	4.6	13
11	Produced Water Desalination via Pervaporative Distillation. Water (Switzerland), 2020, 12, 3560.	1.2	10
12	Desalinating a real hyper-saline pre-treated produced water via direct-heat vacuum membrane distillation. Water Research, 2022, 218, 118503.	5.3	9
13	Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS Applied Materials & Interfaces, 2021, 13, 52647-52658.	4.0	6
14	Sustainable Desalination and Water Reuse. Synthesis Lectures on Sustainable Development, 2021, 2, 1-204.	0.2	4
15	Microbial community changes during the start-up of an anaerobic/aerobic/anoxic-type sequencing batch reactor. Environmental Technology (United Kingdom), 2013, 34, 1211-1217.	1.2	1