Junfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095707/publications.pdf

Version: 2024-02-01

687363 713466 30 495 13 21 citations h-index g-index papers 30 30 30 191 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Corrosion and penetration behaviors of slag/steel on the corroded interfaces of Al2O3-C refractories: Role of Ti3AlC2. Corrosion Science, 2018, 143, 166-176.	6.6	61
2	Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: Antioxidant or alternative carbon source?. Journal of the European Ceramic Society, 2018, 38, 3387-3394.	5.7	52
3	Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1100–1500 °C range. Ceramics International, 2019, 45, 21099-21107.	4.8	38
4	Influence of Ti 3 AlC 2 on corrosion resistance and microstructure of Al 2 O 3 –Ti 3 AlC 2 –C refractories in contact with ladle slag. Journal of the European Ceramic Society, 2016, 36, 1505-1511.	5.7	37
5	Corrosion mechanism of Cr2O3-Al2O3-ZrO2 refractories in a coal-water slurry gasifier: A post-mortem analysis. Corrosion Science, 2020, 163, 108250.	6.6	30
6	Influence of Ti3AlC2 on microstructure and thermal mechanical properties of Al2O3-Ti3AlC2-C refractories. Ceramics International, 2016, 42, 14126-14134.	4.8	29
7	Degradation mechanism of Cr ₂ 0 ₃ â€ZrO ₂ refractories in a coalâ€water slurry gasifier: Role of stress cracks. Journal of the American Ceramic Society, 2020, 103, 3299-3310.	3.8	26
8	The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry. Ceramics International, 2018, 44, 16435-16442.	4.8	21
9	Formation of liquidâ€phase isolation layer on the corroded interface of MgO/Al ₂ O ₃ â€SiC refractory and molten steel: Role of SiC. Journal of the American Ceramic Society, 2021, 104, 2366-2377.	3.8	20
10	Effect of ferrosilicon additive and sintering condition on microstructural evolution and mechanical properties of reaction-bonded SiC refractories. Ceramics International, 2016, 42, 17650-17658.	4.8	15
11	Formation of ferrospinel layer at the corroded interface between Al ₂ O ₃ â€spinel refractory and molten steel in RH refining ladle. Journal of the American Ceramic Society, 2021, 104, 6044-6053.	3.8	15
12	Hydration Resistance of CaO Material Prepared by Ca(OH)2 Calcination with Chelating Compound. Materials, 2019, 12, 2325.	2.9	14
13	A low-cost approach to fabricate SiC nanosheets by reactive sintering from Si powders and graphite. Journal of Alloys and Compounds, 2019, 788, 345-351.	5.5	14
14	Microstructural and hydration resistance study of CaO with powder surface modification by Al coupling agents: Alkoxy type and phosphate type. Ceramics International, 2021, 47, 18699-18707.	4.8	14
15	Synthesis of Si3N4/SiC reaction-bonded SiC refractories: The effects of Si/C molar ratio on microstructure and properties. Ceramics International, 2017, 43, 16518-16524.	4.8	13
16	Improvement in hydration resistance of CaO granules based on CaO–TiO2, CaO–ZrO2 and CaO–V2O5 systems. Materials Chemistry and Physics, 2020, 254, 123413.	4.0	13
17	Influence of carbon sources on nitriding process, microstructures and mechanical properties of Si3N4 bonded SiC refractories. Journal of the European Ceramic Society, 2017, 37, 1821-1829.	5.7	12
18	Corrosion mechanism of cement-bonded Al2O3–MgAl2O4 pre-cast castables in contact with molten steel and slag. Ceramics International, 2022, 48, 5168-5173.	4.8	12

#	Article	IF	CITATIONS
19	Improved hydration resistance of CaO granules via solâ€processed metal oxide protective layers. Journal of the American Ceramic Society, 2021, 104, 4878-4890.	3.8	10
20	Degradation behaviors of cement-free corundum-spinel castables in Ruhrstahl Heraeus refining ladle: Role of infiltrated steel. Ceramics International, 2021, 47, 32008-32014.	4.8	10
21	Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM). Journal of the Australian Ceramic Society, 2020, 56, 885-894.	1.9	8
22	Influence of magnesium-aluminum hydrotalcite on the microstructure and mechanical properties of magnesia castables. Ceramics International, 2022, 48, 3923-3932.	4.8	8
23	Effect of titanium chelating compound on hydration resistance of CaO material. Journal of the American Ceramic Society, 2020, 103, 5302-5311.	3.8	5
24	Influence of tricalcium aluminate on the microstructure evolution of CaO specimen during hydration. Journal of the European Ceramic Society, 2022, 42, 1796-1803.	5.7	5
25	Chemical attack of Al2O3-MgAl2O4 refractory castables in the non-slag-tapping side of refining ladle. Ceramics International, 2022, 48, 16832-16838.	4.8	5
26	One-Pot Synthesis of Alumina-Titanium Diboride Composite Powder at Low Temperature. Materials, 2021, 14, 4742.	2.9	2
27	In-situ synthesis of magnesium aluminate spinel – Zirconium diboride composite powder in magnesium chloride melt. Ceramics International, 2022, 48, 11869-11871.	4.8	2
28	Reconstruction and hydration of hydrotalcite response to thermal activation temperature: Enhancement of properties for magnesia castables. Ceramics International, 2022, 48, 31245-31254.	4.8	2
29	High-temperature microstructural evolution of Ti3AlC2 ceramics in a graphite bed. Ceramics International, 2022, 48, 31406-31417.	4.8	2
30	Characteristics of CaZrO ₃ material prepared by in situ decomposition pore forming technology. International Journal of Applied Ceramic Technology, 0, , .	2.1	0