Eva Rath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095698/publications.pdf Version: 2024-02-01

		430442	642321
31	1,454 citations	18	23
papers	citations	h-index	g-index
31	31	31	2398
all docs	docs citations	times ranked	citing authors

Ενλ Ρλτμ

#	Article	IF	CITATIONS
1	Mitochondrial function — gatekeeper of intestinal epithelial cell homeostasis. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 497-516.	8.2	190
2	The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 2018, 6, 134.	4.9	169
3	Mitochondrial function controls intestinal epithelial stemness and proliferation. Nature Communications, 2016, 7, 13171.	5.8	134
4	Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut, 2012, 61, 1269-1278.	6.1	125
5	Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Scientific Reports, 2015, 5, 16831.	1.6	117
6	Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn's disease recurrence. Gut, 2020, 69, 1939-1951.	6.1	100
7	Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Frontiers in Immunology, 2016, 7, 154.	2.2	95
8	Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology, 2018, 155, 1539-1552.e12.	0.6	85
9	Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. European Journal of Nutrition, 2011, 50, 219-233.	1.8	70
10	Organoids to Study Intestinal Nutrient Transport, Drug Uptake and Metabolism – Update to the Human Model and Expansion of Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 577656.	2.0	47
11	Lactobacillus reuteri 100-23 Transiently Activates Intestinal Epithelial Cells of Mice That Have a Complex Microbiota during Early Stages of Colonization13. Journal of Nutrition, 2008, 138, 1684-1691.	1.3	42
12	Mitochondria at the Interface Between Danger Signaling and Metabolism: Role of Unfolded Protein Responses in Chronic Inflammation. Inflammatory Bowel Diseases, 2012, 18, 1364-1377.	0.9	42
13	Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury. Mucosal Immunology, 2022, 15, 595-604.	2.7	36
14	Colonic Expression of the Peptide Transporter PEPT1 Is Downregulated During Intestinal Inflammation and Is Not Required for NOD2-dependent Immune Activation. Inflammatory Bowel Diseases, 2014, 20, 671-684.	0.9	31
15	Nutrigenomics and Nutrigenetics in Inflammatory Bowel Diseases. Journal of Clinical Gastroenterology, 2012, 46, 735-747.	1.1	29
16	<i>Helicobacter pylori</i> ³ -glutamyltranspeptidase impairs T-lymphocyte function by compromising metabolic adaption through inhibition of cMyc and IRF4 expression. Cellular Microbiology, 2015, 17, 51-61.	1.1	28
17	Mitochondrial Metabolism in the Intestinal Stem Cell Niche—Sensing and Signaling in Health and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 602814.	1.8	26
18	C/EBP homologous protein inhibits tissue repair in response to gut injury and is inversely regulated with chronic inflammation. Mucosal Immunology, 2014, 7, 1452-1466.	2.7	24

ένα Κάτη

#	Article	IF	CITATIONS
19	A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. Journal of Clinical Investigation, 2022, 132, .	3.9	21
20	Drug Screening, Oral Bioavailability and Regulatory Aspects: A Need for Human Organoids. Pharmaceutics, 2021, 13, 1280.	2.0	12
21	Unfolded Protein Responses in the Intestinal Epithelium. Journal of Clinical Gastroenterology, 2012, 46, S3-S5.	1.1	11
22	Role of Incretin Hormones in Bowel Diseases. Endocrine Development, 2017, 32, 49-73.	1.3	9
23	Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sciences, 2021, 267, 118974.	2.0	9
24	Intestinal organoids. , 2018, , 195-214.		2
25	W1601 Signal Integration of Endoplasmic Reticulum and Mitochondrial Unfolded Protein Stress Responses in Intestinal Epithelial Cells of Patients with Ulcerative Colitis and Murine Models of Immune-Mediated Colitis: Inhibitory Mechanisms of Interleukin 10. Gastroenterology, 2009, 136, A-700.	0.6	0
26	84 Mitochondrial Stress Induction in the Epithelium Fuels Endoplasmic Reticulum Unfolded Protein Responses via Double-Stranded RNA-Activated Protein Kinase (PKR) Under Conditions of Chronic Intestinal Inflammation. Gastroenterology, 2010, 138, S-15.	0.6	0
27	630 Expression of C/EBP Homologous Protein in Intestinal Epithelial Cells is Not Associated With the Development of Chronic Inflammation: A Transgenic Approach. Gastroenterology, 2012, 142, S-124.	0.6	0
28	PKR-signaling in DSS-induced Colitis. Inflammatory Bowel Diseases, 2013, 19, E48-E49.	0.9	0
29	407 Mitochondrial Unfolded Protein Responses Control Epithelial Stem Cell Proliferation in the Intestine. Gastroenterology, 2014, 146, S-87.	0.6	0
30	Intestinal organoids. , 2018, , 43-71.		0
31	120 – Mitochondrial Impairment in Crohn's Disease-Like Inflammation Drives Intestinal Stem Cell Transition Towards Dysfunctional Paneth Cells, Gastroenterology, 2019, 156, S-32	0.6	0