
## Olga Mavrouli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095483/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rockfalls: analysis of the block fragmentation through field experiments. Landslides, 2022, 19, 1009-1029.                                                                                                                                  | 5.4 | 11        |
| 2  | Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a. Geoscientific Model Development, 2021, 14, 1841-1864.                                                                                                       | 3.6 | 8         |
| 3  | Identification of potential rockfall sources using UAV-derived point cloud. Bulletin of Engineering<br>Geology and the Environment, 2021, 80, 6539-6561.                                                                                    | 3.5 | 15        |
| 4  | Use of UAV-based photogrammetry products for semi-automatic detection and classification of asphalt road damage in landslide-affected areas. Engineering Geology, 2021, 294, 106363.                                                        | 6.3 | 33        |
| 5  | Prediction of a multi-hazard chain by an integrated numerical simulation approach: the Baige<br>landslide, Jinsha River, China. Landslides, 2020, 17, 147-164.                                                                              | 5.4 | 97        |
| 6  | Landslide susceptibility assessment at Kathmandu Kyirong Highway Corridor in pre-quake, co-seismic<br>and post-quake situations. Journal of Mountain Science, 2020, 17, 2652-2673.                                                          | 2.0 | 8         |
| 7  | Landslide characteristics and its impact on tourism for two roadside towns along the Kathmandu<br>Kyirong Highway. Journal of Mountain Science, 2020, 17, 1840-1859.                                                                        | 2.0 | 7         |
| 8  | Modeling landslide failure surfaces by polynomial surface fitting. Geomorphology, 2020, 368, 107358.                                                                                                                                        | 2.6 | 6         |
| 9  | Evaluation of Maximum Rockfall Dimensions Based on Probabilistic Assessment of the Penetration of the Slope. Rock Mechanics and Rock Engineering, 2020, 53, 2301-2312.                                                                      | 5.4 | 12        |
| 10 | Slow-moving landslides interacting with the road network: Analysis of damage using ancillary data,<br>in situ surveys and multi-source monitoring data. Engineering Geology, 2019, 260, 105244.                                             | 6.3 | 37        |
| 11 | How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and<br>their causal relation in the Koshi River basin, central Himalaya. Natural Hazards and Earth System<br>Sciences, 2019, 19, 1789-1805. | 3.6 | 34        |
| 12 | Integrated risk assessment due to slope instabilities in the roadway network of Gipuzkoa, Basque<br>Country. Natural Hazards and Earth System Sciences, 2019, 19, 399-419.                                                                  | 3.6 | 20        |
| 13 | TXT-tool 4.034-1.1: Quantitative Rockfall Risk Assessment for Roadways and Railways. , 2018, , 509-519.                                                                                                                                     |     | 4         |
| 14 | Calculation of the rockwall recession rate of a limestone cliff, affected by rockfalls, using<br>cosmogenic chlorine-36. Case study of the Montsec Range (Eastern Pyrenees, Spain). Geomorphology,<br>2018, 306, 325-335.                   | 2.6 | 9         |
| 15 | Magnitude and frequency relations: are there geological constraints to the rockfall size?. Landslides, 2018, 15, 829-845.                                                                                                                   | 5.4 | 34        |
| 16 | Damage analysis of masonry structures subjected to rockfalls. Landslides, 2017, 14, 891-904.                                                                                                                                                | 5.4 | 23        |
| 17 | A fractal fragmentation model for rockfalls. Landslides, 2017, 14, 875-889.                                                                                                                                                                 | 5.4 | 76        |
| 18 | Comparing rockfall scar volumes and kinematically detachable rock masses. Engineering Geology, 2017, 219, 64-73.                                                                                                                            | 6.3 | 19        |

Olga Mavrouli

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Rockfall Occurrence and Fragmentation. , 2017, , 75-97.                                                                                                                                                                      |     | 30        |
| 20 | Experimental study on rockfall fragmentation: In situ test design and first results. , 2016, , 983-990.                                                                                                                      |     | 6         |
| 21 | Comparison of block size distribution in rockfalls. , 2016, , 1767-1774.                                                                                                                                                     |     | 6         |
| 22 | Comparing kinematically detachable rock masses and rockfall scar volumes. IOP Conference Series:<br>Earth and Environmental Science, 2015, 26, 012020.                                                                       | 0.3 | 2         |
| 23 | A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides, 2015, 12, 815-825.                                                                                                          | 5.4 | 66        |
| 24 | Size Distribution for Potentially Unstable Rock Masses and In Situ Rock Blocks Using LIDAR-Generated<br>Digital Elevation Models. Rock Mechanics and Rock Engineering, 2015, 48, 1589-1604.                                  | 5.4 | 36        |
| 25 | Quantitative Rockfall Risk Assessment in the Roadways of Cipuzkoa. , 2015, , 1813-1816.                                                                                                                                      |     | 3         |
| 26 | Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 2014, 73, 209.                                                                                         | 3.5 | 541       |
| 27 | An expert judgement approach to determining the physical vulnerability of roads to debris flow.<br>Bulletin of Engineering Geology and the Environment, 2014, 73, 291-305.                                                   | 3.5 | 46        |
| 28 | Assessment of socioeconomic vulnerability to landslides using an indicator-based approach:<br>methodology and case studies. Bulletin of Engineering Geology and the Environment, 2014, 73, 307-324.                          | 3.5 | 49        |
| 29 | Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bulletin of Engineering Geology and the Environment, 2014, 73, 265.                                                                        | 3.5 | 68        |
| 30 | Methods for the Characterization of the Vulnerability of Elements at Risk. Advances in Natural and<br>Technological Hazards Research, 2014, , 233-273.                                                                       | 1.1 | 7         |
| 31 | Disaster Mitigation by Corrective and Protection Measures. Advances in Natural and Technological<br>Hazards Research, 2014, , 303-326.                                                                                       | 1.1 | 2         |
| 32 | Finite element analysis and fragility curves for the evaluation of restoration mortars behavior<br>regarding the earthquake protection of historic structures. Soil Dynamics and Earthquake<br>Engineering, 2013, 54, 61-65. | 3.8 | 5         |
| 33 | Magnitude–frequency relation for rockfall scars using a Terrestrial Laser Scanner. Engineering<br>Geology, 2012, 145-146, 50-64.                                                                                             | 6.3 | 57        |
| 34 | Vulnerability of simple reinforced concrete buildings to damage by rockfalls. Landslides, 2010, 7,<br>169-180.                                                                                                               | 5.4 | 64        |
| 35 | Rockfall vulnerability assessment for reinforced concrete buildings. Natural Hazards and Earth<br>System Sciences, 2010, 10, 2055-2066.                                                                                      | 3.6 | 45        |
| 36 | Methodology to evaluate rock slope stability under seismic conditions at Solà de Santa Coloma,<br>Andorra. Natural Hazards and Earth System Sciences, 2009, 9, 1763-1773.                                                    | 3.6 | 28        |

| #  | Article                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of masonry elasticity and shear moduli using finite element micro-models. Smart<br>Structures and Systems, 2008, 4, 171-182. | 1.9 | 1         |
| 38 | Aseismic protection of historical structures using modern retrofitting techniques. Smart Structures and Systems, 2008, 4, 233-245.         | 1.9 | 3         |
| 39 | Rehabilitation of hospital buildings using passive control systems. Smart Structures and Systems, 2006, 2, 305-312.                        | 1.9 | 5         |