
Francesca Arcudi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095444/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
2	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Đoped Carbon NanoDots. Angewandte Chemie - International Edition, 2016, 55, 2107-2112.	7.2	266
3	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie - International Edition, 2017, 56, 4757-4761.	7.2	201
4	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
5	Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nature Communications, 2018, 9, 3442.	5.8	169
6	Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry B, 2018, 6, 5540-5548.	2.9	139
7	Rationally Designed Carbon Nanodots towards Pure Whiteâ€Light Emission. Angewandte Chemie - International Edition, 2017, 56, 4170-4173.	7.2	99
8	Preparation, functionalization and characterization of engineered carbon nanodots. Nature Protocols, 2019, 14, 2931-2953.	5.5	96
9	Snapshots into carbon dots formation through a combined spectroscopic approach. Nature Communications, 2021, 12, 2640.	5.8	86
10	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	7.3	77
11	Quantum Dot-Sensitized Photoreduction of CO ₂ in Water with Turnover Number > 80,000. Journal of the American Chemical Society, 2021, 143, 18131-18138.	6.6	75
12	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Đoped Carbon NanoDots. Angewandte Chemie, 2016, 128, 2147-2152.	1.6	72
13	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5062-5067.	7.2	66
14	Selective Functionalization of Halloysite Cavity by Click Reaction: Structured Filler for Enhancing Mechanical Properties of Bionanocomposite Films. Journal of Physical Chemistry C, 2014, 118, 15095-15101.	1,5	61
15	Screening Supramolecular Interactions between Carbon Nanodots and Porphyrins. Journal of the American Chemical Society, 2018, 140, 904-907.	6.6	59
16	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie - International Edition, 2017, 56, 12097-12101.	7.2	58
17	Lighting up the Electrochemiluminescence of Carbon Dots through Pre―and Postâ€5ynthetic Design. Advanced Science, 2021, 8, 2100125.	5.6	49
18	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie, 2017, 129, 4835-4839.	1.6	42

FRANCESCA ARCUDI

#	Article	IF	CITATIONS
19	Top-down and bottom-up approaches to transparent, flexible and luminescent nitrogen-doped carbon nanodot-clay hybrid films. Nanoscale, 2017, 9, 10256-10262.	2.8	41
20	Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. Materials Research Bulletin, 2017, 93, 183-193.	2.7	36
21	Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source. Nature Chemistry, 2022, 14, 1007-1012.	6.6	36
22	Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature Communications, 2021, 12, 7208.	5.8	31
23	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie - International Edition, 2020, 59, 12779-12784.	7.2	28
24	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie - International Edition, 2021, 60, 313-320.	7.2	26
25	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie, 2018, 130, 5156-5161.	1.6	23
26	Rationally Designed Carbon Nanodots towards Pure White‣ight Emission. Angewandte Chemie, 2017, 129, 4234-4237.	1.6	22
27	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie, 2017, 129, 12265-12269.	1.6	16
28	Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Materials Chemistry Frontiers, 2020, 4, 3640-3648.	3.2	15
29	pH-Dependent structure of water-exposed surfaces of CdSe quantum dots. Chemical Communications, 2019, 55, 5435-5438.	2.2	11
30	Colloidally Stable CdS Quantum Dots in Water with Electrostatically Stabilized Weakâ€Binding, Sulfurâ€Free Ligands. Chemistry - A European Journal, 2019, 25, 14469-14474.	1.7	8
31	Binding abilities of new cyclodextrin–cucurbituril supramolecular hosts. Supramolecular Chemistry, 2015, 27, 233-243.	1.5	4
32	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie, 2020, 132, 12879-12884.	1.6	4
33	Efficient and Stable Perovskite Solar Cells based on Nitrogenâ€Doped Carbon Nanodots. Energy Technology, 2022, 10, .	1.8	4
34	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie, 2021, 133, 317-324.	1.6	2
35	Innenrücktitelbild: Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence (Angew. Chem. 17/2017). Angewandte Chemie, 2017, 129, 4971-4971.	1.6	1
36	Quantum Dot-sensitized Photoreduction of CO2 in Water with Turnover Number >80,000. , 0, , .		0