
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095086/publications.pdf Version: 2024-02-01

LUZ SANCHANSPI

#	Article	IF	CITATIONS
1	Impact of Co-Delivery of EGCG and Tuna Oil within a Broccoli Matrix on Human Gut Microbiota, Phenolic Metabolites and Short Chain Fatty Acids In Vitro. Molecules, 2022, 27, 656.	3.8	2
2	Nutrient-Dense Shelf-Stable Vegetable Powders and Extruded Snacks Made from Carrots and Broccoli. Foods, 2021, 10, 2298.	4.3	7
3	Oxidative stability of spray dried matcha-tuna oil powders. Food Research International, 2020, 132, 109050.	6.2	22
4	Broccoli byproducts for protection and co-delivery of EGCG and tuna oil. Food Chemistry, 2020, 326, 126963.	8.2	6
5	Comparison of the adsorption behaviour of catechin onto cellulose and pectin. Food Chemistry, 2019, 271, 733-738.	8.2	25
6	Development of broccoli by-products as carriers for delivering EGCG. Food Chemistry, 2019, 301, 125301.	8.2	22
7	Extrusion of apple pomace increases antioxidant activity upon <i>in vitro</i> digestion. Food and Function, 2019, 10, 951-963.	4.6	44
8	Effects on plasma carotenoids and consumer acceptance of a functional carrot-based product to supplement vegetable intake: A randomized clinical trial. Journal of Functional Foods, 2019, 60, 103421.	3.4	4
9	New food ingredients from broccoli byâ€products: physical, chemical and technological properties. International Journal of Food Science and Technology, 2019, 54, 1423-1432.	2.7	23
10	In vitro degradation of curcuminoids by faecal bacteria: Influence of method of addition of curcuminoids into buttermilk yoghurt. Food Chemistry, 2019, 283, 414-421.	8.2	0
11	Extrusion of a Curcuminoidâ€Enriched Oat Fiberâ€Cornâ€Based Snack Product. Journal of Food Science, 2019, 84, 284-291.	3.1	10
12	Adsorption of catechin onto cellulose and its mechanism study: Kinetic models, characterization and molecular simulation. Food Research International, 2018, 112, 225-232.	6.2	31
13	The effect of extrusion on the functional properties of oat fibre. LWT - Food Science and Technology, 2017, 84, 106-113.	5.2	15
14	Microencapsulation Technologies. Food Engineering Series, 2017, , 119-142.	0.7	4
15	Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Research International, 2017, 100, 665-673.	6.2	69
16	Microencapsulated krill and tuna oil blend raises plasma long-chain <i>n</i> -3 polyunsaturated fatty acid levels compared to tuna oil with similar increases in ileal contractility in rats. International Journal of Food Sciences and Nutrition, 2017, 68, 201-209.	2.8	1
17	Enhanced Bioaccessibility of Curcuminoids in Buttermilk Yogurt in Comparison to Curcuminoids in Aqueous Dispersions. Journal of Food Science, 2016, 81, H769-76.	3.1	17
18	Effect of encapsulant matrix on stability of microencapsulated probiotics. Journal of Functional Foods, 2016, 25, 447-458.	3.4	32

#	Article	IF	CITATIONS
19	Microencapsulated Fish Oil Powder Formulation with Improved Resistance to Oil Leakage During Powder Compression. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 701-710.	1.9	9
20	Compressible extruded granules containing microencapsulated oil powders. Powder Technology, 2016, 291, 276-283.	4.2	4
21	Bioequivalence of <i>n</i> -3 fatty acids from microencapsulated fish oil formulations in human subjects. British Journal of Nutrition, 2015, 113, 822-831.	2.3	15
22	Bioaccessibility of curcuminoids in buttermilk in simulated gastrointestinal digestion models. Food Chemistry, 2015, 179, 52-59.	8.2	25
23	Enhanced oxidative stability of extruded product containing polyunsaturated oils. LWT - Food Science and Technology, 2015, 62, 1105-1111.	5.2	11
24	Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radical Biology and Medicine, 2015, 84, 206-214.	2.9	80
25	Challenges and Solutions to Incorporation of Nutraceuticals in Foods. Annual Review of Food Science and Technology, 2015, 6, 463-477.	9.9	83
26	Processing treatments enhance the adsorption characteristics of epigallocatechin-3-gallate onto apple pomace. Journal of Food Engineering, 2015, 150, 75-81.	5.2	16
27	The format of \hat{l}^2 -carotene delivery affects its stability during extrusion. LWT - Food Science and Technology, 2015, 60, 1-7.	5.2	20
28	Oat Fiber As a Carrier for Curcuminoids. Journal of Agricultural and Food Chemistry, 2014, 62, 12172-12177.	5.2	5
29	Protection of Epigallocatechin Gallate against Degradation during <i>in Vitro</i> Digestion Using Apple Pomace as a Carrier. Journal of Agricultural and Food Chemistry, 2014, 62, 12265-12270.	5.2	23
30	Digestion of microencapsulated oil powders: in vitro lipolysis and in vivo absorption from a food matrix. Food and Function, 2014, 5, 2905-2912.	4.6	25
31	The batch adsorption of the epigallocatechin gallate onto apple pomace. Food Chemistry, 2014, 160, 260-265.	8.2	22
32	Improving the Oxidative Stability of Krill Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1347-1354.	1.9	13
33	Interactions of buttermilk with curcuminoids. Food Chemistry, 2014, 149, 47-53.	8.2	33
34	Interaction between Whole Buttermilk and Resveratrol. Journal of Agricultural and Food Chemistry, 2013, 61, 7096-7101.	5.2	23
35	Nano―and microâ€encapsulated systems for enhancing the delivery of resveratrol. Annals of the New York Academy of Sciences, 2013, 1290, 107-112.	3.8	105
36	Encapsulation of mixtures of tuna oil, tributyrin and resveratrol in a spray dried powder formulation. Food and Function, 2013, 4, 1794.	4.6	25

#	Article	IF	CITATIONS
37	Omega-3 fatty acids in ileal effluent after consuming different foods containing microencapsulated fish oil powder – an ileostomy study. Food and Function, 2013, 4, 74-82.	4.6	26
38	Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of Functional Foods, 2013, 5, 98-105.	3.4	111
39	Binding of resveratrol with sodium caseinate in aqueous solutions. Food Chemistry, 2013, 141, 1050-1054.	8.2	108
40	Both stereo-isomers of glucose enhance the survival rate of microencapsulated Lactobacillus rhamnosus GG during storage in the dry state. Journal of Food Engineering, 2013, 116, 809-813.	5.2	19
41	Water sorption properties, molecular mobility and probiotic survival in freeze dried protein–carbohydrate matrices. Food and Function, 2013, 4, 1376.	4.6	30
42	Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. Journal of Food Engineering, 2012, 109, 597-602.	5.2	99
43	Food Matrix Effects on in Vitro Digestion of Microencapsulated Tuna Oil Powder. Journal of Agricultural and Food Chemistry, 2011, 59, 8442-8449.	5.2	57
44	Intestinal passage of microencapsulated fish oil in rats following oral administration. Food and Function, 2011, 2, 684.	4.6	17
45	Tocopherol and Ascorbate Have Contrasting Effects on the Viability of Microencapsulated <i>Lactobacillus rhamnosus</i> GG. Journal of Agricultural and Food Chemistry, 2011, 59, 10556-10563.	5.2	23
46	In vitro lipolysis of fish oil microcapsules containing protein and resistant starch. Food Chemistry, 2011, 124, 1480-1489.	8.2	36
47	Effects of microencapsulation on the gastrointestinal transit and tissue distribution of a bioactive mixture of fish oil, tributyrin and resveratrol. Journal of Functional Foods, 2011, 3, 25-37.	3.4	69
48	Encapsulation of Resveratrol Using Water-in-Oil-in-Water Double Emulsions. Food Biophysics, 2010, 5, 120-127.	3.0	104
49	Microencapsulated <i>Lactobacillus rhamnosus</i> GG Powders: Relationship of Powder Physical Properties to Probiotic Survival during Storage. Journal of Food Science, 2010, 75, E588-95.	3.1	108
50	Resistant Starch Modification: Effects on Starch Properties and Functionality as Coâ€Encapsulant in Sodium Caseinateâ€Based Fish Oil Microcapsules. Journal of Food Science, 2010, 75, E636-42.	3.1	27
51	Oxidative Stability of Microencapsulated Fish Oil Powders Stabilized by Blends of Chitosan, Modified Starch, and Glucose. Journal of Agricultural and Food Chemistry, 2010, 58, 4487-4493.	5.2	52
52	Functional properties of milk constituents: Application for microencapsulation of oils in spray-dried emulsions – A minireview. Dairy Science and Technology, 2010, 90, 137-146.	2.2	11
53	Site Specific Delivery of Microencapsulated Fish Oil to the Gastrointestinal Tract of the Rat. Digestive Diseases and Sciences, 2009, 54, 511-521.	2.3	42
54	NMR of Microencapsulated Fish Oil Samples During In Vitro Digestion. Food Biophysics, 2009, 4, 32-41.	3.0	27

#	Article	IF	CITATIONS
55	Effects of Modification of Encapsulant Materials on the Susceptibility of Fish Oil Microcapsules to Lipolysis. Food Biophysics, 2008, 3, 140-145.	3.0	30
56	Retention of propanal in protein-stabilised tuna oil-in-water emulsions. Food Chemistry, 2007, 101, 746-752.	8.2	15
57	Microencapsulation and Delivery of Omega-3 Fatty Acids. Functional Foods & Nutraceuticals Series, 2006, , 297-327.	0.1	25
58	Maillard Reaction Products as Encapsulants for Fish Oil Powders. Journal of Food Science, 2006, 71, E25.	3.1	211
59	Synbiotic Microcapsules That Enhance Microbial Viability during Nonrefrigerated Storage and Gastrointestinal Transit. Applied and Environmental Microbiology, 2006, 72, 2280-2282.	3.1	129
60	Stabilization of oils by microencapsulation with heated protein-glucose syrup mixtures. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 965-972.	1.9	76