
Yongjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8094838/publications.pdf

Version: 2024-02-01

YONCHE WANC

#	Article	IF	CITATIONS
1	Lowâ€Threshold, Highly Stable Colloidal Quantum Dot Shortâ€Wave Infrared Laser enabled by Suppression of Trapâ€Assisted Auger Recombination. Advanced Materials, 2022, 34, e2107532.	21.0	15
2	Mixed AgBiS ₂ nanocrystals for photovoltaics and photodetectors. Nanoscale, 2022, 14, 4987-4993.	5.6	14
3	Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nature Photonics, 2022, 16, 235-241.	31.4	100
4	Environmentally Friendly AgBiS ₂ Nanocrystal Inks for Efficient Solar Cells Employing Green Solvent Processing. Advanced Energy Materials, 2022, 12, .	19.5	13
5	Matrix Manipulation of Directly‧ynthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. Advanced Functional Materials, 2021, 31, 2104457.	14.9	24
6	Packing State Management to Realize Dense and Semiconducting Lead Sulfide Nanocrystals Film via a Single-Step Deposition. Cell Reports Physical Science, 2020, 1, 100183.	5.6	11
7	Magnetron Sputtered SnO ₂ Constituting Double Electron Transport Layers for Efficient PbS Quantum Dot Solar Cells. Solar Rrl, 2020, 4, 2000218.	5.8	12
8	Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells. Nano Energy, 2020, 75, 104961.	16.0	41
9	High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure. Science China Materials, 2019, 62, 225-235.	6.3	56
10	Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nature Communications, 2019, 10, 5136.	12.8	107
11	Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. Journal of Materials Chemistry C, 2019, 7, 1575-1583.	5.5	19
12	Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering. Journal of Materials Chemistry A, 2019, 7, 15951-15959.	10.3	72
13	Widely Applicable n-Type Molecular Doping for Enhanced Photovoltaic Performance of All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 2776-2784.	8.0	46
14	Highâ€Efficiency PbS Quantumâ€Dot Solar Cells with Greatly Simplified Fabrication Processing via "Solvent uring― Advanced Materials, 2018, 30, e1707572.	21.0	139
15	In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering. Advanced Materials, 2018, 30, e1704871.	21.0	125
16	Thermally Stable Allâ€Polymer Solar Cells with High Tolerance on Blend Ratios. Advanced Energy Materials, 2018, 8, 1800029.	19.5	163
17	Broadband Enhancement of PbS Quantum Dot Solar Cells by the Synergistic Effect of Plasmonic Gold Nanobipyramids and Nanospheres. Advanced Energy Materials, 2018, 8, 1701194.	19.5	56
18	Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. Journal of Materials Chemistry A, 2018, 6, 24693-24701.	10.3	45

YONGJIE WANG

#	Article	IF	CITATIONS
19	PbS Quantum Dots/2D Nonlayered CdS <i>_x</i> Se _{1–<i>x</i>} Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 43887-43895.	8.0	29
20	Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. Journal of Materials Chemistry A, 2018, 6, 17688-17697.	10.3	65
21	High-Efficiency White Organic Light-Emitting Diodes Integrating Gradient Exciplex Allocation System and Novel D-Spiro-A Materials. ACS Applied Materials & Interfaces, 2018, 10, 29840-29847.	8.0	48
22	Stable and Highly Efficient PbS Quantum Dot Tandem Solar Cells Employing a Rationally Designed Recombination Layer. Advanced Energy Materials, 2017, 7, 1602667.	19.5	55
23	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23181-23188.	8.0	120
24	Efficient PbS quantum dot solar cells employing a conventional structure. Journal of Materials Chemistry A, 2017, 5, 23960-23966.	10.3	104
25	Flexible Broadband Graphene Photodetectors Enhanced by Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals. Small, 2017, 13, 1701881.	10.0	63
26	Pulsed Lasers Employing Solutionâ€Processed Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals. Advanced Materials, 2016, 28, 3535-3542.	21.0	68
27	Pulsed Lasers: Pulsed Lasers Employing Solutionâ€Processed Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals (Adv. Mater. 18/2016). Advanced Materials, 2016, 28, 3604-3604.	21.0	Ο