List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8094701/publications.pdf Version: 2024-02-01

		12597	37326
218	12,105	71	100
papers	citations	h-index	g-index
219	219	219	2592
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mechanics Based Design of Structures and Machines, 2023, 51, 481-500.	3.4	33
2	Dynamic stability of hybrid fiber/nanocomposite-reinforced toroidal shells subjected to the periodic axial and pressure loadings. Mechanics of Advanced Materials and Structures, 2023, 30, 1574-1590.	1.5	9
3	On vibrational-based numerical simulation of a jet engine cowl shell-like structure. Mechanics of Advanced Materials and Structures, 2023, 30, 4016-4027.	1.5	24
4	Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering With Computers, 2022, 38, 489-521.	3.5	134
5	Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines, 2022, 50, 1914-1931.	3.4	124
6	Static deflection and free vibration analysis of functionally graded and porous cylindrical micro/nano shells based on the three-dimensional elasticity and modified couple stress theories. Mechanics Based Design of Structures and Machines, 2022, 50, 2184-2205.	3.4	37
7	Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory. Mechanics Based Design of Structures and Machines, 2022, 50, 2350-2378.	3.4	24
8	The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Engineering With Computers, 2022, 38, 3125-3152.	3.5	55
9	Free vibration and stability of hybrid nanocomposite-reinforced shallow toroidal shells using an extended closed-form formula based on the Galerkin method. Mechanics of Advanced Materials and Structures, 2022, 29, 5284-5300.	1.5	25
10	Vibration of FG Porous Three-Layered Beams Equipped by Agglomerated Nanocomposite Patches Resting on Vlasov's Foundation. Transport in Porous Media, 2022, 142, 157-186.	1.2	7
11	On the deformation and frequency analyses of SARS-CoV-2 at nanoscale. International Journal of Engineering Science, 2022, 170, 103604.	2.7	29
12	Sinc and discrete singular convolution for analysis of threeâ€ l ayer composite of perovskite solar cell. International Journal of Energy Research, 2022, 46, 4279-4300.	2.2	3
13	Nonlinear thermo-mechanical static analysis of toroidal shells made of nanocomposite/fiber reinforced composite plies surrounded by elastic medium. Thin-Walled Structures, 2022, 170, 108616.	2.7	21
14	A new eigenvalue problem solver for thermoâ€mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Mathematical Methods in the Applied Sciences, 2022, 45, 2592-2614.	1.2	101
15	Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells. Aerospace Science and Technology, 2022, 120, 107257.	2.5	43
16	Thermo-elastic damped nonlinear dynamic response of the initially stressed hybrid GPL/CNT/fiber/polymer composite toroidal shells surrounded by elastic foundation. Composite Structures, 2022, 283, 115047.	3.1	11
17	Torsional vibrations of functionally graded restrained nanotubes. European Physical Journal Plus, 2022, 137, 1.	1.2	3
18	An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Computational and Applied Mathematics, 2022, 41, 1.	1.0	72

#	Article	lF	CITATIONS
19	An eigenvalue solution for torsional vibrations of restrained porous nanorods using doublet mechanics theory. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	1
20	Torsional and longitudinal vibration analysis of a porous nanorod with arbitrary boundaries. Physica B: Condensed Matter, 2022, 633, 413761.	1.3	10
21	Parametric vibration of a dielectric elastomer microbeam resonator based on a hyperelastic cosserat continuum model. Composite Structures, 2022, 287, 115386.	3.1	16
22	Natural frequency analysis of FG-GOP/ polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers. Engineering Analysis With Boundary Elements, 2022, 138, 369-389.	2.0	37
23	Novel size-dependent finite element formulation for modal analysis of cracked nanorods. Materials Today Communications, 2022, 31, 103545.	0.9	2
24	Geometrically nonlinear electro-thermo-static analysis of piezoelectric/CNT/GPL/fibre/polymer sandwich panels with double curvature resting on elastic foundation. Composite Structures, 2022, 295, 115844.	3.1	11
25	Nonlinear forced vibration analysis of laminated composite doubly-curved shells enriched by nanocomposites incorporating foundation and thermal effects. Aerospace Science and Technology, 2022, 127, 107717.	2.5	17
26	Interaction of the lateral buckling strength with the axial load for FG micro-sized I-section beam–columns. Thin-Walled Structures, 2022, 179, 109616.	2.7	6
27	Wave propagation analysis of sandwich FGM nanoplate surrounded by viscoelastic foundation. Archives of Civil and Mechanical Engineering, 2022, 22, .	1.9	10
28	Nonlocal thermoelastic vibration of a solid medium subjected to a pulsed heat flux via Caputo–Fabrizio fractional derivative heat conduction. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	15
29	Size-dependent dynamic stability of nanocomposite enriched micro-shell panels in thermal environment using the modified couple stress theory. Engineering Analysis With Boundary Elements, 2022, 143, 483-500.	2.0	10
30	A Novel Nonlinear Elasticity Approach for Analysis of Nonlinear and Hyperelastic Structures. Engineering Analysis With Boundary Elements, 2022, 143, 219-236.	2.0	8
31	Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft. Acta Astronautica, 2021, 179, 330-344.	1.7	13
32	Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect. Composite Structures, 2021, 258, 113430.	3.1	41
33	On the shell model for human eye in Glaucoma disease. International Journal of Engineering Science, 2021, 158, 103414.	2.7	24
34	Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Composite Structures, 2021, 255, 112924.	3.1	32
35	Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 2021, 11, 571.	1.9	39
36	Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation. Composite Structures, 2021, 263, 113720.	3.1	14

#	Article	IF	CITATIONS
37	An accurate numerical approach for studying perovskite solar cells. International Journal of Energy Research, 2021, 45, 16456-16477.	2.2	8
38	Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method. Mathematics, 2021, 9, 1048.	1.1	72
39	A new analytical solution of vibration response of orthotropic composite plates with two adjacent edges rotationally-restrained and the others free. Composite Structures, 2021, 266, 113882.	3.1	13
40	Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole. Mathematics, 2021, 9, 1536.	1.1	69
41	Elastic wave characteristics in damped laminated composite nano-scaled shells with different panel shapes. Composite Structures, 2021, 267, 113924.	3.1	22
42	Free vibration of irregular plates via indirect differential quadrature and singular convolution techniques. Engineering Analysis With Boundary Elements, 2021, 128, 66-79.	2.0	11
43	An analytical solution for the free vibration of FG nanoplates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	38
44	On the mechanical analysis of microcrystalline cellulose sheets. International Journal of Engineering Science, 2021, 166, 103500.	2.7	17
45	On the generalized model of shell structures with functional cross-sections. Composite Structures, 2021, 272, 114192.	3.1	17
46	A novel composite model for vibration of thin-walled layered composite panels incorporating the agglomeration of CNTs. Aerospace Science and Technology, 2021, 116, 106897.	2.5	28
47	Buckling analysis of nanobeams with deformable boundaries via doublet mechanics. Archive of Applied Mechanics, 2021, 91, 4765-4782.	1.2	11
48	Derivation of nonlocal FEM formulation for thermo-elastic Timoshenko beams on elastic matrix. Composite Structures, 2021, 273, 114292.	3.1	12
49	Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory. Composite Structures, 2021, 276, 114564.	3.1	48
50	Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels. Composite Structures, 2021, 277, 114648.	3.1	29
51	Higher-order time-differential heat transfer model with three-phase lag including memory-dependent derivatives. International Communications in Heat and Mass Transfer, 2021, 128, 105649.	2.9	21
52	Comparative Stability Analysis of Boron Nitride Nanotube using MD Simulation and Nonlocal Elasticity Theory. International Journal of Engineering and Applied Sciences, 2021, 13, 189-200.	0.1	2
53	Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Engineering With Computers, 2020, 36, 953-964.	3.5	138
54	Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method. International Journal for Numerical Methods in Engineering, 2020, 121, 990-1019.	1.5	7

#	Article	IF	CITATIONS
55	3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	17
56	Nonlocal finite element analysis for axial vibration of embedded love–bishop nanorods. International Journal of Mechanical Sciences, 2020, 188, 105939.	3.6	27
57	Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments. Thin-Walled Structures, 2020, 155, 106945.	2.7	35
58	On the non-linear dynamics of torus-shaped and cylindrical shell structures. International Journal of Engineering Science, 2020, 156, 103371.	2.7	72
59	Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	17
60	Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	25
61	Analysis of functionally graded doubly-curved shells with different materials via higher order shear deformation theory. Composite Structures, 2020, 251, 112645.	3.1	25
62	Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerospace Science and Technology, 2020, 99, 105753.	2.5	43
63	On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science, 2020, 149, 103236.	2.7	160
64	Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. European Physical Journal Plus, 2020, 135, 1.	1.2	159
65	Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method. Acta Mechanica, 2020, 231, 2565-2587.	1.1	17
66	Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Composite Structures, 2020, 247, 112391.	3.1	103
67	Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams. JVC/Journal of Vibration and Control, 2019, 25, 2837-2849.	1.5	39
68	On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. International Journal of Mechanical Sciences, 2019, 161-162, 105076.	3.6	31
69	On the dynamics of small-sized structures. International Journal of Engineering Science, 2019, 145, 103164.	2.7	25
70	On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. International Journal of Engineering Science, 2019, 143, 14-32.	2.7	200
71	Nonlocal FEM Formulation for Vibration Analysis of Nanowires on Elastic Matrix with Different Materials. Mathematical and Computational Applications, 2019, 24, 38.	0.7	17
72	A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects. Composite Structures, 2019, 220, 209-220.	3.1	42

#	Article	IF	CITATIONS
73	Effect of silicon dioxide substrate on buckling behavior of Zinc Oxide nanotubes via size-dependent continuum theories. Composite Structures, 2019, 218, 130-141.	3.1	18
74	Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges. Composite Structures, 2019, 221, 110842.	3.1	35
75	Size-Dependent Transverse Vibration of Microbeams. , 2019, , 1123-1139.		Ο
76	Axial Vibration of Strain Gradient Micro-rods. , 2019, , 1141-1155.		1
77	Free vibration analysis of laminated and FGM composite annular sector plates. Composites Part B: Engineering, 2019, 157, 182-194.	5.9	101
78	Modal Analysis of Micro and Nanowires Using Finite Element Softwares. International Journal of Engineering and Applied Sciences, 2019, 10, 291-304.	0.1	6
79	Geometric Mapping For Non-Rectangular Plates with Micro/Nano or Macro Scaled under Different Effects International Journal of Engineering and Applied Sciences, 2019, 11, 445-454.	0.1	1
80	Vibration analysis of circular cylindrical panels with CNT reinforced and FGM composites. Composite Structures, 2018, 202, 374-388.	3.1	31
81	Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Composite Structures, 2018, 183, 7-20.	3.1	93
82	Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method. Composite Structures, 2018, 186, 139-153.	3.1	49
83	Small size and rotary inertia effects on the natural frequencies of carbon nanotubes. Curved and Layered Structures, 2018, 5, 273-279.	0.5	7
84	Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Composites Part B: Engineering, 2018, 150, 68-77.	5.9	53
85	Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method. Composite Structures, 2018, 203, 458-465.	3.1	47
86	On dynamic analysis of nanorods. International Journal of Engineering Science, 2018, 130, 33-50.	2.7	170
87	Numerical Methods for FGM Composites Shells and Plates. International Journal of Engineering and Applied Sciences, 2018, 10, 5-12.	0.1	2
88	Axial Vibration of Strain Gradient Micro-rods. , 2018, , 1-15.		0
89	Carbon Nanotube Beam Model and Free Vibration Analysis. International Journal of Engineering and Applied Sciences, 2018, 10, 1-4.	0.1	2
90	Elastic Beam Model and Bending Analysis of Silver Nanowires. International Journal of Engineering and Applied Sciences, 2018, 10, 13-20.	0.1	2

Ã-MER CIVALEK

#	Article	IF	CITATIONS
91	Defination of length-scale parameter in Eringen's Nonlocal Elasticity via Nolocal Lattice and Finite Element Formulation. International Journal of Engineering and Applied Sciences, 2018, 10, 264-275.	0.1	1
92	A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Composite Structures, 2017, 168, 872-884.	3.1	109
93	Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Composites Part B: Engineering, 2017, 114, 34-45.	5.9	120
94	Vibration of laminated composite panels and curved plates with different types of FGM composite constituent. Composites Part B: Engineering, 2017, 122, 89-108.	5.9	21
95	A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Composite Structures, 2017, 176, 1028-1038.	3.1	86
96	On the analysis of microbeams. International Journal of Engineering Science, 2017, 121, 14-33.	2.7	173
97	Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Composites Part B: Engineering, 2017, 129, 77-87.	5.9	147
98	Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix. Archive of Applied Mechanics, 2017, 87, 1797-1814.	1.2	36
99	Free vibration analysis of annular sector plates via conical shell equations. Curved and Layered Structures, 2017, 4, 146-157.	0.5	12
100	Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method. Composite Structures, 2017, 161, 93-110.	3.1	38
101	Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties. Composite Structures, 2017, 160, 267-279.	3.1	42
102	Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Composites Part B: Engineering, 2017, 111, 45-59.	5.9	152
103	Frequency and Mode Shapes of Au Nanowires Using the Continuous Beam Models. International Journal of Engineering and Applied Sciences, 2017, 9, 55-55.	0.1	8
104	Vibration analysis of graphene sheets using membrane model. Pamukkale University Journal of Engineering Sciences, 2017, 23, 652-658.	0.2	2
105	Size-Dependent Transverse Vibration of Microbeams. , 2017, , 1-17.		0
106	ELASTİK BİR MALZEME İLE TEMAS HALİNDE OLAN GRAFEN TABAKANIN TİTREŞİM HESABI. Journal of t Engineering and Architecture of Gazi University, 2017, 32, .	ne Faculty	of 8
107	What is The Correct Mechanical Model of Aorta Artery. International Journal of Engineering and Applied Sciences, 2017, 9, 138-138.	0.1	1

108Comparison of small scale effect theories for buckling analysis of nanobeams. International Journal
of Engineering and Applied Sciences, 2017, 9, 87-97.0.15

#	Article	IF	CITATIONS
109	A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Applied Mathematics and Computation, 2016, 289, 335-352.	1.4	155
110	Static and dynamic response of sector-shaped graphene sheets. Mechanics of Advanced Materials and Structures, 2016, 23, 432-442.	1.5	16
111	Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique. Curved and Layered Structures, 2016, 3, .	0.5	66
112	Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel. Composites Part B: Engineering, 2016, 94, 1-10.	5.9	99
113	DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Composite Structures, 2016, 143, 300-309.	3.1	105
114	Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronautica, 2016, 119, 1-12.	1.7	172
115	The effects of thickness on frequency values for rotating circular shells. International Journal of Engineering and Applied Sciences, 2016, 8, 26-26.	0.1	6
116	Buckling Analysis of Silicon Carbide Nanotubes (SiCNTs). International Journal of Engineering and Applied Sciences, 2016, 8, 101-101.	0.1	19
117	Nonlocal Finite Element Formulation for Vibration. International Journal of Engineering and Applied Sciences, 2016, 8, 109-109.	0.1	9
118	Static analysis of beams on elastic foundation by the method of discrete singular convolution. International Journal of Engineering and Applied Sciences, 2016, 8, 67-67.	0.1	7
119	Discrete Singular Convolution and Differential Quadrature Method for Buckling Analysis of Laminated Composite Plates. International Journal of Engineering and Applied Sciences, 2016, 8, 66-66.	0.1	4
120	TEK KATMANLI GRAFEN TABAKALARIN EĞİLME VE TİTREŞİMİ. Mühendislik Bilimleri Ve Tasarım Dergi	si, 20 16, 4	ł, 1173.
121	A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mechanica, 2015, 226, 2277-2294.	1.1	189
122	A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences, 2015, 99, 10-20.	3.6	179
123	Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Composite Structures, 2015, 134, 294-301.	3.1	121
124	MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION. International Journal of Engineering and Applied Sciences, 2015, 7, 1-1.	0.1	8
125	Coordinate Transformation for Sector and Annular Sector Shaped Graphene Sheets on Silicone Matrix. International Journal of Engineering and Applied Sciences, 2015, 7, 56-56.	0.1	16
126	NONLOCAL DEFLECTION OF MICROTUBULES UNDER POINT LOAD. International Journal of Engineering and Applied Sciences, 2015, 7, 33-33.	0.1	9

#	Article	IF	CITATIONS
127	A Simple Buckling Analysis Of Aorta Artery. International Journal of Engineering and Applied Sciences, 2015, 7, 34-34.	0.1	4
128	Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. JVC/Journal of Vibration and Control, 2014, 20, 606-616.	1.5	187
129	A new trigonometric beam model for buckling of strain gradient microbeams. International Journal of Mechanical Sciences, 2014, 81, 88-94.	3.6	106
130	Mechanical analysis of isolated microtubules based on a higher-order shear deformation beam theory. Composite Structures, 2014, 118, 9-18.	3.1	10
131	Static analysis of laminated conical shells by Discrete Singular Convolution (DSC) approach. KSCE Journal of Civil Engineering, 2014, 18, 1455-1463.	0.9	2
132	Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. International Journal of Engineering Science, 2014, 85, 90-104.	2.7	202
133	Elastic buckling behavior of skew shaped single-layer graphene sheets. Thin Solid Films, 2014, 550, 450-458.	0.8	11
134	Shear deformation beam models for functionally graded microbeams with new shear correction factors. Composite Structures, 2014, 112, 214-225.	3.1	106
135	Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations. International Journal of Pressure Vessels and Piping, 2014, 113, 1-9.	1.2	99
136	Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Composites Part B: Engineering, 2013, 55, 263-268.	5.9	127
137	Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. Computational Materials Science, 2013, 77, 295-303.	1.4	87
138	Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Applied Mathematical Modelling, 2013, 37, 9355-9367.	2.2	173
139	Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica, 2013, 48, 863-873.	1.2	107
140	Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mechanica, 2013, 224, 2185-2201.	1.1	190
141	Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 2013, 98, 314-322.	3.1	315
142	A size-dependent shear deformation beam model based on the strain gradient elasticity theory. International Journal of Engineering Science, 2013, 70, 1-14.	2.7	211
143	Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Composites Part B: Engineering, 2013, 50, 171-179.	5.9	91
144	Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory. Composites Part B: Engineering, 2013, 45, 1001-1009.	5.9	113

#	Article	IF	CITATIONS
145	Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity. Structural Engineering and Mechanics, 2013, 48, 195-205.	1.0	65
146	Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation. Applied Mathematics and Computation, 2012, 219, 3226-3240.	1.4	120
147	Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Materials & Design, 2012, 42, 164-171.	5.1	124
148	INVESTIGATION OF SIZE EFFECTS ON STATIC RESPONSE OF SINGLE-WALLED CARBON NANOTUBES BASED ON STRAIN GRADIENT ELASTICITY. International Journal of Computational Methods, 2012, 09, 1240032.	0.8	33
149	Comment on "Static and dynamic analysis of micro beams based on strain gradient elasticity theory―by S. Kong, S. Zhou, Z. Nie, and K. Wang, (International Journal of Engineering Science, 47, 487–498, 2009). International Journal of Engineering Science, 2012, 50, 279-281.	2.7	10
150	Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Archive of Applied Mechanics, 2012, 82, 423-443.	1.2	204
151	Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. International Journal of Engineering Science, 2011, 49, 1268-1280.	2.7	422
152	Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. International Journal of Pressure Vessels and Piping, 2011, 88, 290-300.	1.2	86
153	Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Applied Mathematical Modelling, 2011, 35, 2053-2067.	2.2	300
154	Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Current Applied Physics, 2011, 11, 1133-1138.	1.1	76
155	Buckling Analysis of Cantilever Carbon Nanotubes Using the Strain Gradient Elasticity and Modified Couple Stress Theories. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1821-1827.	0.4	96
156	Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel and Composite Structures, 2011, 11, 403-421.	1.3	77
157	Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Advances in Engineering Software, 2010, 41, 557-560.	1.8	80
158	Free vibration analysis of Timoshenko beams by DSC method. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1890-1898.	1.0	79
159	Nonlinear static response of laminated composite plates by discrete singular convolution method. Composite Structures, 2010, 93, 153-161.	3.1	95
160	Free Vibration and Bending Analyses of Cantilever Microtubules Based on Nonlocal Continuum Model. Mathematical and Computational Applications, 2010, 15, 289-298.	0.7	82
161	FREE VIBRATION OF KIRCHHOFF PLATES WITH SECTOR SHAPES BY THE METHOD OF DISCRETE SINGULAR CONVOLUTION. International Journal of Computational Methods, 2010, 07, 229-240.	0.8	6
162	Use of Eight-node Curvilinear Domains in Discrete Singular Convolution Method for Free Vibration Analysis of Annular Sector Plates with Simply Supported Radial Edges. JVC/Journal of Vibration and Control, 2010, 16, 303-320.	1.5	22

#	Article	IF	CITATIONS
163	Three-dimensional Elasticity Analysis of Rectangular Composite Plates. Journal of Composite Materials, 2010, 44, 2049-2066.	1.2	5
164	Mechanical modeling of microtubules based on nonlocal continuum theory. , 2010, , .		0
165	Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation. Geomechanics and Engineering, 2010, 2, 45-56.	0.9	14
166	Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method. Structural Engineering and Mechanics, 2010, 36, 279-299.	1.0	14
167	Free Vibration Analysis of Carbon Nanotubes Based on Shear Deformable Beam Theory by Discrete Singular Convolution Technique. Mathematical and Computational Applications, 2010, 15, 57-65.	0.7	55
168	Discrete Singular Convolution for Free Vibration Analysis Annular Membranes. Mathematical and Computational Applications, 2009, 14, 131-138.	0.7	6
169	NUMERICAL SOLUTIONS TO THE FREE VIBRATION PROBLEM OF MINDLIN SECTOR PLATES USING THE DISCRETE SINGULAR CONVOLUTION METHOD. International Journal of Structural Stability and Dynamics, 2009, 09, 267-284.	1.5	18
170	Free vibration and bending analysis of circular Mindlin plates using singular convolution method. Communications in Numerical Methods in Engineering, 2009, 25, 907-922.	1.3	17
171	Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on firstâ€order shear deformation theory. International Journal for Numerical Methods in Engineering, 2009, 79, 290-313.	1.5	83
172	Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Applied Mathematical Modelling, 2009, 33, 3825-3835.	2.2	80
173	Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique. International Journal of Pressure Vessels and Piping, 2009, 86, 677-683.	1.2	88
174	Analysis of shear deformable laminated composite trapezoidal plates. Materials & Design, 2009, 30, 3030-3035.	5.1	18
175	Eigenvalues of membranes having skew and rhombic geometry using discrete singular convolution algorithm. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 4003-4009.	1.7	12
176	A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. Applied Mathematical Modelling, 2009, 33, 300-314.	2.2	84
177	Discrete singular convolution method for buckling analysis of rectangular Mindlin plates. IES Journal Part A: Civil and Structural Engineering, 2009, 2, 143-152.	0.4	3
178	Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation. Steel and Composite Structures, 2009, 9, 59-75.	1.3	4
179	Free vibration of circular and annular membranes with varying density by the method of discrete singular convolution. Structural Engineering and Mechanics, 2009, 32, 621-634.	1.0	8
180	Differential quadrature method for frequency analysis of membranes having irregular domains using an eight-node curvilinear element. Smart Structures and Systems, 2009, 5, 587-590.	1.9	2

#	Article	IF	CITATIONS
181	Discrete singular convolution methodology for free vibration and stability analyses of arbitrary straightâ€sided quadrilateral plates. Communications in Numerical Methods in Engineering, 2008, 24, 1475-1495.	1.3	14
182	Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method. Finite Elements in Analysis and Design, 2008, 44, 725-731.	1.7	90
183	Analysis of Thick Rectangular Plates with Symmetric Cross-ply Laminates Based on First-order Shear Deformation Theory. Journal of Composite Materials, 2008, 42, 2853-2867.	1.2	78
184	Discrete singular convolution method and applications to free vibration analysis of circular and annular plates. Structural Engineering and Mechanics, 2008, 29, 237-240.	1.0	8
185	Discrete singular convolution for buckling analyses of plates and columns. Structural Engineering and Mechanics, 2008, 29, 279-288.	1.0	11
186	Frequency analysis of moderately thick uniform isotropic annular plates by discrete singular convolution method. Structural Engineering and Mechanics, 2008, 29, 411-422.	1.0	4
187	DISCRETE SINGULAR CONVOLUTION (DSC) FOR FREE VIBRATION ANALYSIS OF CONICAL SHELLS WITH VARIOUS BOUNDARY CONDITIONS. International Journal of Computational Methods, 2007, 04, 81-108.	0.8	5
188	Discrete Singular Convolution for Free Vibration Analysis of Anisotropic Rectangular Plates. Mathematical and Computational Applications, 2007, 12, 151-160.	0.7	3
189	A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution. Thin-Walled Structures, 2007, 45, 692-698.	2.7	79
190	Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach. Journal of Computational and Applied Mathematics, 2007, 205, 251-271.	1.1	154
191	Nonlinear analysis of thin rectangular plates on Winkler–Pasternak elastic foundations by DSC–HDQ methods. Applied Mathematical Modelling, 2007, 31, 606-624.	2.2	122
192	Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. International Journal of Mechanical Sciences, 2007, 49, 752-765.	3.6	142
193	Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach. Finite Elements in Analysis and Design, 2007, 43, 1013-1022.	1.7	83
194	Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. International Journal of Pressure Vessels and Piping, 2007, 84, 527-535.	1.2	78
195	Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Structural Engineering and Mechanics, 2007, 25, 127-130.	1.0	81
196	Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ). Structural Engineering and Mechanics, 2007, 25, 201-217.	1.0	9
197	Buckling Analysis of Symmetric Laminated Composite Plates by Using Discrete Singular Convolution. Trends in Applied Sciences Research, 2007, 2, 460-471.	0.4	3
198	The determination of frequencies of laminated conical shells via the discrete singular convolution method. Journal of Mechanics of Materials and Structures, 2006, 1, 163-182.	0.4	81

#	Article	IF	CITATIONS
199	Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. Journal of Sound and Vibration, 2006, 294, 966-980.	2.1	78
200	An efficient method for free vibration analysis of rotating truncated conical shells. International Journal of Pressure Vessels and Piping, 2006, 83, 1-12.	1.2	124
201	Vibration analysis of conical panels using the method of discrete singular convolution. Communications in Numerical Methods in Engineering, 2006, 24, 169-181.	1.3	87
202	Free vibration analysis of composite conical shells using the discrete singular convolution algorithm. Steel and Composite Structures, 2006, 6, 353-366.	1.3	74
203	Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods. International Journal of Pressure Vessels and Piping, 2005, 82, 470-479.	1.2	85
204	LARGE DEFLECTION STATIC AND DYNAMIC ANALYSIS OF THIN CIRCULAR PLATES RESTING ON TWO-PARAMETER ELASTIC FOUNDATION: HDQ/FD COUPLED METHODOLOGY APPROACHES. International Journal of Computational Methods, 2005, 02, 271-291.	0.8	6
205	HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells. Structural Engineering and Mechanics, 2005, 19, 535-550.	1.0	12
206	Free Vibration Analysis of Elastic Beams Using Harmonic Differential Quadraure (HDQ). Mathematical and Computational Applications, 2004, 9, 257-264.	0.7	4
207	Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Engineering Structures, 2004, 26, 171-186.	2.6	294
208	Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates. Structural Engineering and Mechanics, 2004, 17, 1-14.	1.0	98
209	Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks. Structural Engineering and Mechanics, 2004, 18, 303-314.	1.0	8
210	Vibration analysis of carbon nanotubeâ€reinforced composite microbeams. Mathematical Methods in the Applied Sciences, 0, , .	1.2	68
211	Vibration analysis of graphene nanoplatelets' reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media. Waves in Random and Complex Media, 0, , 1-31.	1.6	26
212	Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load. Transport in Porous Media, 0, , 1.	1.2	9
213	Frequencies Values of Orthotropic Composite Circular and Annular Plates. International Journal of Engineering and Applied Sciences, 0, , 55-55.	0.1	5
214	Nano ¶l§ekli plakların serbest titreÅŸimi ve tek katmanlı grafen uygulaması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , 104-104.	0.2	0
215	Longitudinal vibration analysis of FG nanorod restrained with axial springs using doublet mechanics. Waves in Random and Complex Media, 0, , 1-23.	1.6	7
216	Finite element formulation for nanoâ€scaled beam elements. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 0, , e202000377.	0.9	2

#	Article	IF	CITATIONS
217	A new heat conduction model for viscoelastic micro beams considering the magnetic field and thermal effects. Waves in Random and Complex Media, 0, , 1-30.	1.6	2
218	Vibration analysis of cracked plates resting on elastic foundation via moving least squares differential quadrature method. Waves in Random and Complex Media, 0, , 1-21.	1.6	4