Christos Koukouvinos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8094321/publications.pdf

Version: 2024-02-01

198 papers 1,265 citations

16 h-index 642321 23 g-index

204 all docs

204 docs citations

204 times ranked 479 citing authors

#	Article	IF	CITATIONS
1	On self-dual codes over some prime fields. Discrete Mathematics, 2003, 262, 37-58.	0.4	55
2	The triple exponentially weighted moving average control chart. Quality Technology and Quantitative Management, 0 , , 1 -29.	1.1	50
3	Weighing matrices and their applications. Journal of Statistical Planning and Inference, 1997, 62, 91-101.	0.4	32
4	New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function – a review. Journal of Statistical Planning and Inference, 1999, 81, 153-182.	0.4	32
5	Monitoring of time between events with a double generally weighted moving average control chart. Quality and Reliability Engineering International, 2019, 35, 685-710.	1.4	31
6	Multi-level k-circulant Supersaturated Designs. Metrika, 2006, 64, 209-220.	0.5	30
7	18-run nonisomorphic three level orthogonal arrays. Metrika, 2007, 66, 31-37.	0.5	25
8	-optimal and minimax-optimal cyclic supersaturated designs via multi-objective simulated annealing. Journal of Statistical Planning and Inference, 2008, $138,1639$ - 1646 .	0.4	24
9	On skew-Hadamard matrices. Discrete Mathematics, 2008, 308, 2723-2731.	0.4	24
10	A double exponentially weighted moving average chart for time between events. Communications in Statistics Part B: Simulation and Computation, 2020, 49, 2765-2784.	0.6	23
11	On multi-level supersaturated designs. Journal of Statistical Planning and Inference, 2006, 136, 2805-2819.	0.4	22
12	A Theory of Ternary Complementary Pairs. Journal of Combinatorial Theory - Series A, 2001, 96, 358-375.	0.5	19
13	Construction of some optimal mixed-level supersaturated designs. Statistics and Probability Letters, 2005, 74, 312-321.	0.4	19
14	Projection properties of certain three level orthogonal arrays. Metrika, 2005, 62, 241-257.	0.5	19
15	Estimation and variable selection via frailty models with penalized likelihood. Statistics in Medicine, 2012, 31, 2223-2239.	0.8	19
16	A triple exponentially weighted moving average control chart for monitoring time between events. Quality and Reliability Engineering International, 2021, 37, 1059-1079.	1.4	19
17	Exploring -circulant supersaturated designs via genetic algorithms. Computational Statistics and Data Analysis, 2007, 51, 2958-2968.	0.7	17
18	A progressive mean control chart for monitoring time between events. Quality and Reliability Engineering International, 2020, 36, 161-186.	1.4	17

#	Article	IF	Citations
19	The extended homogeneously weighted moving average control chart. Quality and Reliability Engineering International, 2021, 37, 2134-2155.	1.4	17
20	A nonparametric double generally weighted moving average signedâ€rank control chart for monitoring process location. Quality and Reliability Engineering International, 2020, 36, 2441-2458.	1.4	16
21	A new S2â€₹EWMA control chart for monitoring process dispersion. Quality and Reliability Engineering International, 2021, 37, 1334-1354.	1.4	16
22	A nonparametric triple exponentially weighted moving average sign control chart. Quality and Reliability Engineering International, 2021, 37, 1504-1523.	1.4	16
23	Further contributions to nonisomorphic two level orthogonal arrays. Journal of Statistical Planning and Inference, 2007, 137, 2080-2086.	0.4	15
24	An effective step-down algorithm for the construction and the identification of nonisomorphic orthogonal arrays. Metrika, 2007, 66, 139-149.	0.5	15
25	Comparative study of the $\langle i \rangle C \langle i \rangle \langle sub \rangle p \langle sub \rangle$ and $\langle i \rangle S \langle i \rangle \langle sub \rangle pmk \langle sub \rangle$ indices for logistic regression profile using different link functions. Quality Engineering, 2019, 31, 453-462.	0.7	15
26	Growth in Gaussian elimination for weighing matrices, W(n,nâ^'1). Linear Algebra and Its Applications, 2000, 306, 189-202.	0.4	14
27	An algorithm to find formulae and values of minors for Hadamard matrices. Linear Algebra and Its Applications, 2001, 330, 129-147.	0.4	14
28	The maximal determinant and subdeterminants of $\hat{A}\pm 1$ matrices. Linear Algebra and Its Applications, 2003, 373, 297-310, see a second matrices of order small math altimg="sil_gif" overflow="scroll"	0.4	14
29	xmins:xocs= http://www.eisevier.com/xmi/xocs/dtd xmins:xs= http://www.w3.org/2001/xiviLSchema xmlns:xsi="http://www.w3.org/2001/xiviLSchema xmlns:xsi="http://www.w3.org/2001/xiviLSchema xmlns:xsi="http://www.eisevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb= "http://www.eisevier.com/xml/common/table/dtd" xmlns:tb= "http://www.eisevier.com/xml/common/table/dtd" xmlns:tb= "http://www.eisevier.com/xml/common/table/dtd" xmlns:tb= "http://www.eisevier.com/xml/common/table/dtd" xmlns:tb= "http://www.eisevier.com/xml/common/table/dtd" xmlns:tb= "http://www.eisevier.com/xml/common/table/dtd" xmlns:tb= "http://www.eisevier.com/xml/ja/dtd" xmlns:tb= "http://www.eisevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb= "http://www.eisevier.com/xml/ja/dtd" xmlns:tb= "htt	0.4	14
30	Discr Evaluation of inequivalent projections of Hadamard matrices of order 24. Metrika, 2004, 59, 51-73.	0.5	13
31	A progressive mean control chart for COM-Poisson distribution. Communications in Statistics Part B: Simulation and Computation, 2019, , 1-19.	0.6	13
32	On good matrices, skew Hadamard matrices and optimal designs. Computational Statistics and Data Analysis, 2002, 41, 171-184.	0.7	12
33	Further explorations into ternary complementary pairs. Journal of Combinatorial Theory - Series A, 2006, 113, 952-965.	0.5	12
34	A new variable selection method based on SVM for analyzing supersaturated designs. Journal of Quality Technology, 2019, 51, 21-36.	1.8	12
35	Weighing Matrices and String Sorting. Annals of Combinatorics, 2009, 13, 305-313.	0.3	11
36	A double progressive mean control chart for monitoring Poisson observations. Journal of Computational and Applied Mathematics, 2020, 373, 112232.	1.1	11

#	Article	IF	Citations
37	A double moving average control chart: Discussion. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 6043-6057.	0.6	11
38	The triple moving average control chart. Journal of Computational and Applied Mathematics, 2021, 384, 113171.	1.1	11
39	Monitoring reliability for a gamma distribution with a double progressive mean control chart. Quality and Reliability Engineering International, 2021, 37, 199-218.	1.4	11
40	Heuristic algorithms for Hadamard matrices with two circulant cores. Theoretical Computer Science, 2008, 407, 274-277.	0.5	10
41	Response modelling approach to robust parameter design methodology using supersaturated designs. Journal of Quality Technology, 2018, 50, 66-75.	1.8	10
42	Monitoring univariate and multivariate profiles using the triple exponentially weighted moving average scheme with fixed and random explanatory variables. Computers and Industrial Engineering, 2022, 163, 107846.	3.4	10
43	Orthogonal Designs and Type II Codes over â"æk. Designs, Codes, and Cryptography, 2002, 25, 163-174.	1.0	9
44	Inequivalent projections of Hadamard matrices of orders 16 and 20. Metrika, 2003, 57, 29-35.	0.5	9
45	Construction methods for three-level supersaturated designs based on weighing matrices. Statistics and Probability Letters, 2003, 63, 339-352.	0.4	9
46	Values of Minors of an Infinite Family of D-Optimal Designs and Their Application to the Growth Problem. SIAM Journal on Matrix Analysis and Applications, 2001, 23, 1-14.	0.7	8
47	Optimal multi-level supersaturated designs constructed from linear and quadratic functions. Statistics and Probability Letters, 2004, 69, 199-211.	0.4	8
48	A hybrid SAGA algorithm for the construction of -optimal cyclic supersaturated designs. Journal of Statistical Planning and Inference, 2009, 139, 478-485.	0.4	8
49	An efficient string sorting algorithm for weighing matrices of small weight. Optimization Letters, 2010, 4, 29-36.	0.9	8
50	Periodic complementary binary sequences and Combinatorial Optimization algorithms. Journal of Combinatorial Optimization, 2010, 20, 63-75.	0.8	8
51	Competent genetic algorithms for weighing matrices. Journal of Combinatorial Optimization, 2012, 24, 508-525.	0.8	8
52	U-type and column-orthogonal designs for computer experiments. Metrika, 2014, 77, 1057-1073.	0.5	8
53	A moving average control chart using a robust scale estimator for process dispersion. Quality and Reliability Engineering International, 2019, 35, 2462-2493.	1.4	8
54	Sure independence screening for analyzing supersaturated designs. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 1979-1995.	0.6	8

#	Article	IF	CITATIONS
55	A comparative study on Poisson control charts. Quality Technology and Quantitative Management, 2020, 17, 354-382.	1.1	8
56	Nonparametric triple exponentially weighted moving average signedâ€rank control chart for monitoring shifts in the process location. Quality and Reliability Engineering International, 2021, 37, 2622-2645.	1.4	8
57	A Multidimensional Principal Component Analysis via the C-Product Golub–Kahan–SVD for Classification and Face Recognition. Mathematics, 2021, 9, 1249.	1.1	8
58	Variable selection in saturated and supersaturated designs via lp-lq minimization. Communications in Statistics Part B: Simulation and Computation, 2023, 52, 4326-4347.	0.6	8
59	Monitoring process mean and dispersion with one double generally weighted moving average control chart. Journal of Applied Statistics, 2023, 50, 19-42.	0.6	8
60	The application of regularisation to variable selection in statistical modelling. Journal of Computational and Applied Mathematics, 2022, 404, 113884.	1.1	8
61	An algorithm to find formulae and values of minors for Hadamard matrices: II. Linear Algebra and Its Applications, 2003, 371, 111-124.	0.4	7
62	On the use of three level orthogonal arrays in robust parameter design. Statistics and Probability Letters, 2006, 76, 266-273.	0.4	7
63	Some robust parameter designs from orthogonal arrays. Journal of Applied Statistics, 2008, 35, 1399-1408.	0.6	7
64	Process capability index for Poisson regression profile based on the <i>S</i> _{pmk} index. Quality Engineering, 2019, 31, 430-438.	0.7	7
65	Monitoring of zeroâ€inflated Poisson processes with EWMA and DEWMA control charts. Quality and Reliability Engineering International, 2020, 36, 88-111.	1.4	7
66	A generally weighted moving average control chart for zeroâ€inflated Poisson processes. Quality and Reliability Engineering International, 2020, 36, 675-704.	1.4	7
67	Monitoring of zero-inflated binomial processes with a DEWMA control chart. Journal of Applied Statistics, 2021, 48, 1319-1338.	0.6	7
68	Modified EWMA and DEWMA control charts for process monitoring. Communications in Statistics - Theory and Methods, 2022, 51, 7390-7412.	0.6	7
69	An efficient algorithm for the identification of isomorphic orthogonal arrays. Journal of Discrete Mathematical Sciences and Cryptography, 2006, 9, 125-132.	0.5	6
70	A Method for Analyzing Supersaturated Designs with a Block Orthogonal Structure. Communications in Statistics Part B: Simulation and Computation, 2008, 37, 290-300.	0.6	6
71	Group screening method for the statistical analysis of E(fNOD)-optimal mixed-level supersaturated designs. Statistical Methodology, 2009, 6, 380-388.	0.5	6
72	Measures of uniformity in experimental designs: A selective overview. Communications in Statistics - Theory and Methods, 2016, 45, 3782-3806.	0.6	6

#	Article	IF	CITATIONS
73	An asymptotic confidence interval for the process capability index <i>C_{pm}</i> . Communications in Statistics - Theory and Methods, 2019, 48, 5138-5144.	0.6	6
74	A sum of squares triple exponentially weighted moving average control chart. Quality and Reliability Engineering International, 2021, 37, 2423-2457.	1.4	6
75	On the computation of the Smith normal form of compound matrices. Numerical Algorithms, 1997, 16, 95-105.	1.1	5
76	On generalized projectivity of two-level screening designs. Statistics and Probability Letters, 2004, 68, 429-434.	0.4	5
77	A general construction of E(s 2)-optimal large supersaturated designs. Metrika, 2008, 68, 99-110.	0.5	5
78	Hadamard matrices of Williamson type: A challenge for Computer Algebra. Journal of Symbolic Computation, 2009, 44, 271-279.	0.5	5
79	Tuning Parameter Estimation in Penalized Least Squares Methodology. Communications in Statistics Part B: Simulation and Computation, 2011, 40, 1444-1457.	0.6	5
80	A double exponentially weighted moving average control chart for monitoring COMâ€Poisson attributes. Quality and Reliability Engineering International, 2019, 35, 2130.	1,4	5
81	Comparative study of <i>L</i> ₁ regularized logistic regression methods for variable selection. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 4957-4972.	0.6	5
82	A <i>S</i> ² -GWMA control chart for monitoring the process variability. Quality Engineering, 2021, 33, 533-551.	0.7	5
83	The quadruple exponentially weighted moving average control chart. Quality Technology and Quantitative Management, 2022, 19, 50-73.	1.1	5
84	Univariate and Multivariate Linear Profiles Using Max-Type Extended Exponentially Weighted Moving Average Schemes. IEEE Access, 2022, 10, 6126-6146.	2.6	5
85	On circulant best matrices and their applications. Linear and Multilinear Algebra, 2001, 48, 263-274.	0.5	4
86	Evaluation of some non-orthogonal saturated designs with two levels. Statistics and Probability Letters, 2005, 74, 322-329.	0.4	4
87	A Method for Analyzing Supersaturated Designs. Communications in Statistics Part B: Simulation and Computation, 2005, 34, 929-937.	0.6	4
88	An update on primitive ternary complementary pairs. Journal of Combinatorial Theory - Series A, 2007, 114, 957-963.	0.5	4
89	Encryption schemes using orthogonal arrays. Journal of Discrete Mathematical Sciences and Cryptography, 2009, 12, 615-628.	0.5	4
90	Analyzing supersaturated designs with entropic measures. Journal of Statistical Planning and Inference, 2011, 141, 1307-1312.	0.4	4

#	Article	IF	CITATIONS
91	A Variable Selection Method for Analyzing Supersaturated Designs. Communications in Statistics Part B: Simulation and Computation, 2011, 40, 484-496.	0.6	4
92	Screening Active Effects in Supersaturated Designs with Binary Response via Control Charts. Quality and Reliability Engineering International, 2017, 33, 1475-1483.	1.4	4
93	Multi-level and mixed-level k-circulant supersaturated designs. Metrika, 2018, 81, 337-355.	0.5	4
94	Numerical methods for estimating the tuning parameter in penalized least squares problems. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 1542-1563.	0.6	4
95	Screening Properties And Design Selection Of Certain Two-Level Designs. Journal of Modern Applied Statistical Methods, 2003, 2, 87-107.	0.2	4
96	Monitoring process mean and variability with one triple EWMA chart. Communications in Statistics Part B: Simulation and Computation, 2024, 53, 611-641.	0.6	4
97	Construction of new skew Hadamard matrices and their use in screening experiments. Computational Statistics and Data Analysis, 2004, 45, 423-429.	0.7	3
98	Genetic algorithms for the construction of Hadamard matrices with two circulant cores. Journal of Discrete Mathematical Sciences and Cryptography, 2005, 8, 241-250.	0.5	3
99	A comparison between the Gröbner bases approach and hidden projection properties in factorial designs. Computational Statistics and Data Analysis, 2006, 50, 77-88.	0.7	3
100	Projection Properties of Hadamard Matrices of Order 36 Obtained from Paley's Constructions. Metrika, 2006, 64, 351-359.	0.5	3
101	Orthogonal designs via computational algebra. Journal of Combinatorial Designs, 2006, 14, 351-362.	0.3	3
102	Detecting active effects in unreplicated designs. Journal of Applied Statistics, 2008, 35, 277-281.	0.6	3
103	An Algorithmic Construction of Four-Level Response Surface Designs. Communications in Statistics Part B: Simulation and Computation, 2009, 38, 2152-2160.	0.6	3
104	An information theoretical algorithm for analyzing supersaturated designs for a binary response. Metrika, 2013, 76, 1-18.	0.5	3
105	A General Construction Method for Five-Level Second-Order Rotatable Designs. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 1961-1969.	0.6	3
106	Genetic Algorithm and Data Mining Techniques for Design Selection in Databases. , 2013, , .		3
107	Optimal multi-level supersaturated designs through integer programming. Statistics and Probability Letters, 2014, 84, 183-191.	0.4	3
108	Proximal support vector machine techniques on medical prediction outcome. Journal of Applied Statistics, 2017, 44, 533-553.	0.6	3

#	Article	IF	CITATIONS
109	A method for analyzing supersaturated designs inspired by control charts. Communications in Statistics Part B: Simulation and Computation, 2018, 47, 1134-1145.	0.6	3
110	Evaluation of process capability in gamma regression profiles. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 5174-5189.	0.6	3
111	A generally weighted moving average <i>t</i> control chart for monitoring shifts in the process mean. Communications in Statistics Part B: Simulation and Computation, 2023, 52, 2425-2438.	0.6	3
112	An extended nonparametric homogeneously weighted moving average sign control chart. Quality and Reliability Engineering International, 2021, 37, 3395.	1.4	3
113	A double generally weighted moving average control chart for monitoring the process variability. Journal of Applied Statistics, 2023, 50, 2079-2107.	0.6	3
114	Title is missing!. Designs, Codes, and Cryptography, 2001, 23, 267-282.	1.0	2
115	New orthogonal designs of order 56. Journal of Combinatorial Designs, 2002, 10, 387-393.	0.3	2
116	New visual cryptographic schemes derived from orthogonal and mixed orthogonal arrays. Journal of Discrete Mathematical Sciences and Cryptography, 2004, 7, 291-306.	0.5	2
117	Inequivalent Hadamard matrices with buckets. Journal of Discrete Mathematical Sciences and Cryptography, 2004, 7, 307-317.	0.5	2
118	Another Look at Projection Properties of Hadamard Matrices. Communications in Statistics - Theory and Methods, 2004, 33, 1607-1620.	0.6	2
119	Combined Arrays with Minimum Number of Runs and Maximum Estimation Efficiency. Communications in Statistics - Theory and Methods, 2004, 33, 1621-1628.	0.6	2
120	Some orthogonal arrays with 32 runs and their projection properties. Metrika, 2006, 63, 271-281.	0.5	2
121	Maximum estimation capacity projection designs from Hadamard matrices with 32, 36 and 40 runs. Statistics and Probability Letters, 2007, 77, 220-229.	0.4	2
122	Model identification using 27 runs three level orthogonal arrays. Journal of Applied Statistics, 2009, 36, 33-38.	0.6	2
123	A general construction of E(s 2)-optimal supersaturated designs via supplementary difference sets. Metrika, 2009, 70, 257-265.	0.5	2
124	Analyzing unreplicated 2 ^{<i>k</i>} factorial designs by examining their projections into <i>k</i> â€1 factors. Quality and Reliability Engineering International, 2010, 26, 223-233.	1.4	2
125	A real survival analysis application via variable selection methods for Cox's proportional hazards model. Journal of Applied Statistics, 2010, 37, 1399-1406.	0.6	2
126	A modified power spectral density test applied toÂweighing matrices with small weight. Journal of Combinatorial Optimization, 2011, 22, 873-881.	0.8	2

#	Article	IF	CITATIONS
127	Analyzing Supersaturated Designs by Means of an Information Based Criterion. Communications in Statistics Part B: Simulation and Computation, 2012, 41, 44-57.	0.6	2
128	A general construction of E(fNOD)-optimal multi-level supersaturated designs. Journal of Statistical Planning and Inference, 2012, 142, 1092-1107.	0.4	2
129	Construction of New Three-Level Response Surface Designs. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 1587-1595.	0.6	2
130	A Comparison of Three-Level Orthogonal Arrays inÂthe Presence of Different Correlation Structures inÂObservations. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 552-569.	0.6	2
131	Tuning parameter selection in penalized generalized linear models for discrete data. Statistica Neerlandica, 2014, 68, 276-292.	0.9	2
132	A Penalized Wrapper Method for Screening Main Effects and Interactions in Supersaturated Designs. Quality and Reliability Engineering International, 2015, 31, 1423-1435.	1.4	2
133	Analyzing supersaturated designs for discrete responses via generalized linear models. Statistical Papers, 2015, 56, 121-145.	0.7	2
134	<i>A</i> ₂ -optimal designs: the nearly-balanced case. Statistics, 2017, 51, 235-246.	0.3	2
135	Construction of supersaturated split-plot designs. Statistical Papers, 2020, 61, 2203-2219.	0.7	2
136	On developing an exponentially weighted moving average chart under progressive setup: An efficient approach to manufacturing processes—Discussion. Quality and Reliability Engineering International, 2021, 37, 1628-1634.	1.4	2
137	Construction of mixed-level supersaturated split-plot designs. Metrika, 2021, 84, 949-967.	0.5	2
138	A New Variable Selection Approach Inspired by Supersaturated Designs Given a Large-Dimensional Dataset. Journal of Data Science, 2014, 12, 35-52.	0.5	2
139	Krylov subspace solvers for â, "1 regularized logistic regression method. Communications in Statistics Part B: Simulation and Computation, 2023, 52, 2738-2751.	0.6	2
140	The effect of parameters estimation on the performance of variables control charts under repetitive sampling. Communications in Statistics - Theory and Methods, 0, , 1-20.	0.6	2
141	The quadruple moving average control chart for monitoring the process mean. Communications in Statistics - Theory and Methods, 0, , 1-35.	0.6	2
142	A joint monitoring of the process mean and variance with a TEWMA-Max control chart. Communications in Statistics - Theory and Methods, 2023, 52, 8069-8095.	0.6	2
143	Short Amicable sets and Kharaghani type orthogonal designs. Bulletin of the Australian Mathematical Society, 2001, 64, 495-504.	0.3	1
144	An Infinite Family of Hadamard Matrices with Fourth Last Pivot n /2. Linear and Multilinear Algebra, 2002, 50, 167-173.	0.5	1

#	Article	IF	Citations
145	Values of Minors of an Infinite Family of D-Optimal Designs and Their Application to the Growth Problem: II. SIAM Journal on Matrix Analysis and Applications, 2003, 24, 715-727.	0.7	1
146	Self-Orthogonal and Self-Dual Codes Constructed via Combinatorial Designs and Diophantine Equations. Designs, Codes, and Cryptography, 2004, 32, 193-206.	1.0	1
147	Large supersaturated designs over prime fields. Journal of Statistics and Management Systems, 2005, 8, 305-315.	0.3	1
148	On Hadamard embeddability. Journal of Discrete Mathematical Sciences and Cryptography, 2006, 9, 503-512.	0.5	1
149	A block-stepwise method for analyzing a specific type of supersaturated designs. Journal of Discrete Mathematical Sciences and Cryptography, 2006, 9, 383-402.	0.5	1
150	Self-dual codes over some prime fields constructed from skew-Hadamard matrices. Journal of Discrete Mathematical Sciences and Cryptography, 2007, 10, 255-266.	0.5	1
151	A Comparison of Three-level Orthogonal Arrays in the Presence of a Possible Correlation in Observations. Journal of Applied Statistics, 2007, 34, 167-175.	0.6	1
152	A Lower Bound to the Measure of Optimality for Main Effect Plans in the Symmetric Factorial Experiments. Communications in Statistics - Theory and Methods, 2011, 40, 2358-2365.	0.6	1
153	An Algorithmic Construction of <i>E</i> (<i><<i>²)-Optimal Supersaturated Designs. Journal of Statistical Theory and Practice, 2011, 5, 357-367.</i></i>	0.3	1
154	Analysis of a supersaturated design using Entropy Prior Complexity for binary responses via generalized linear models. Statistical Methodology, 2012, 9, 478-485.	0.5	1
155	New weighing matrices constructed from two circulant submatrices. Optimization Letters, 2012, 6, 211-217.	0.9	1
156	An orthogonal arrays approach to robust parameter designs methodology. Journal of Applied Statistics, 2013, 40, 429-437.	0.6	1
157	Construction of Search Designs From Orthogonal Arrays. Journal of Statistical Theory and Practice, 2013, 7, 774-782.	0.3	1
158	Clustering Effects in Unreplicated Factorial Experiments. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 1998-2007.	0.6	1
159	Model Discrimination Criteria on Model-Robust Designs. Communications in Statistics Part B: Simulation and Computation, 2014, 43, 1575-1582.	0.6	1
160	On the Computation of Entropy Prior Complexity and Marginal Prior Distribution for the Bernoulli Model. Journal of Statistical Theory and Practice, 2015, 9, 59-72.	0.3	1
161	Tuning Parameter Selection in Penalized Frailty Models. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 1538-1553.	0.6	1
162	Supersaturated split-plot designs for robust parameter experiments. Journal of Quality Technology, 2020, 52, 249-264.	1.8	1

#	Article	IF	Citations
163	Efficient estimates in regression models with highly correlated covariates. Journal of Computational and Applied Mathematics, 2020, 373, 112416.	1.1	1
164	The triple exponentially weighted moving average control chart for monitoring Poisson processes. Quality and Reliability Engineering International, 2022, 38, 532-549.	1.4	1
165	Evaluation of experimental designs in durum wheat trials. Biometrical Letters, 2015, 52, 105-114.	0.4	1
166	Canonical forms of some special matrices useful in statistics. Korean Journal of Computational and Applied Mathematics, 1997, 4, 63-82.	0.2	0
167	The behaviour of probabilistic error bounds in floating. Korean Journal of Computational and Applied Mathematics, 1997, 4, 211-222.	0.2	0
168	New Infinite Classes of Orthogonal Designs. Linear and Multilinear Algebra, 2002, 50, 293-300.	0.5	0
169	Effects confounded with blocks in factorial designs: a projective geometric approach with two blocks. Statistics and Probability Letters, 2003, 64, 105-111.	0.4	0
170	On the computation of maximum minors of Hadamard matrices. Mathematics and Computers in Simulation, 2004, 67, 33-44.	2.4	0
171	Combinatorial designs and codes over some prime fields. Journal of Statistical Planning and Inference, 2005, 135, 93-106.	0.4	0
172	Values of minors of some infinite families of matrices constructed from supplementary difference sets and their application to the growth problem. Linear Algebra and Its Applications, 2005, 406, 218-234.	0.4	0
173	Projection Properties of Certain Three-Level Main Effect Plans with Quantitative Factors. Communications in Statistics Part B: Simulation and Computation, 2005, 34, 939-955.	0.6	0
174	Extremal doubly-even self-dual codes from Hadamard matrices. Journal of Discrete Mathematical Sciences and Cryptography, 2006, 9, 331-339.	0.5	0
175	Interaction detection in Latin and Hyper-latin squares. Journal of Discrete Mathematical Sciences and Cryptography, 2006, 9, 341-348.	0.5	0
176	Non-isomorphic orthogonal arrays obtained by juxtaposition. Statistics and Probability Letters, 2006, 76, 274-279.	0.4	0
177	New light on certain two level designs using GrÃ \P bner bases. Journal of Discrete Mathematical Sciences and Cryptography, 2006, 9, 107-124.	0.5	0
178	Modeling alkalosis ordinal data using different link functions. Journal of Statistics and Management Systems, 2008, 11, 327-339.	0.3	0
179	A comparative study of several scoring systems of a disease via the longitudinal data analysis. Journal of Statistics and Management Systems, 2009, 12, 141-154.	0.3	0
180	On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies. Journal of Applied Statistics, 2010, 37, 13-24.	0.6	0

#	Article	IF	Citations
181	A new look at search designs. Sankhya B, 2011, 73, 211-217.	0.4	O
182	QUASI-CYCLIC CODES FROM CYCLIC-STRUCTURED DESIGNS WITH GOOD PROPERTIES. Discrete Mathematics, Algorithms and Applications, 2011, 03, 223-243.	0.4	0
183	A new variable selection method for uniform designs. Journal of Applied Statistics, 2013, 40, 2564-2578.	0.6	0
184	A lower bound to the measure of optimality for main effect plans in the general asymmetric factorial experiments. Statistics, 2013, 47, 405-410.	0.3	0
185	A cusum control chart approach for screening active effects in orthogonal-saturated experiments. Journal of Applied Statistics, 2014, 41, 1611-1618.	0.6	0
186	Stochastic estimates for the trace of functions of matrices via Hadamard matrices. Communications in Statistics Part B: Simulation and Computation, 2015, , 1-13.	0.6	0
187	On the analysis of unbalanced two-level supersaturated designs via generalized linear models. Communications in Statistics Part B: Simulation and Computation, 2015, , 1-13.	0.6	0
188	A comparative study of the use of large margin classifiers on seismic data. Journal of Applied Statistics, 2015, 42, 180-201.	0.6	0
189	A New Method for the Analysis of Supersaturated Designs with Discrete Data. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 1971-1990.	0.6	0
190	Computer-aided unbalanced supersaturated designs involving interactions. Journal of Statistical Computation and Simulation, 2016, 86, 756-770.	0.7	0
191	Sure independence screening for real medical Poisson data. Journal of Applied Statistics, 2019, 46, 324-350.	0.6	0
192	A new construction of quantitative screening designs. Statistics, 2019, 53, 227-244.	0.3	0
193	On optimality and construction of row designs under dependence for estimating means. Linear and Multilinear Algebra, 2022, 70, 714-729.	0.5	0
194	Self-dual Codes over Small Prime Fields from Combinatorial Designs. Lecture Notes in Computer Science, 2009, , 278-287.	1.0	0
195	Combinatorial Optimization for Weighing Matrices with the Ordering Messy Genetic Algorithm. Lecture Notes in Computer Science, 2011, , 148-156.	1.0	0
196	Analysis Methods for Unreplicated Factorial Experiments. Springer Optimization and Its Applications, 2012, , 241-249.	0.6	0
197	A multivariate triple exponentially weighted moving average control chart. Quality and Reliability Engineering International, 0, , .	1.4	0
198	A new double exponentially weighted moving average control chart for monitoring both location and dispersion. Quality and Reliability Engineering International, 0, , .	1.4	0