

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809306/publications.pdf Version: 2024-02-01

Οι Χιλο

#	Article	IF	CITATIONS
1	A Universal Singleâ€Atom Coating Strategy Based on Tannic Acid Chemistry for Multifunctional Heterogeneous Catalysis. Angewandte Chemie, 2022, 134, .	1.6	9
2	Physical properties and photocatalytic activity of pulverized Ga-doped La5Ti2Cu0.9Ag0.1O7S5 powder. Materials Letters, 2022, 319, 132290.	1.3	0
3	Synthesis of Y2Ti2O5S2 by thermal sulfidation for photocatalytic water oxidation and reduction under visible light irradiation. Research on Chemical Intermediates, 2021, 47, 225-234.	1.3	19
4	A Na-containing Pt cocatalyst for efficient visible-light-induced hydrogen evolution on BaTaO ₂ N. Journal of Materials Chemistry A, 2021, 9, 13851-13854.	5.2	13
5	Dual Photolytic Pathways in an Alloyed Plasmonic Near-Perfect Absorber: Implications for Photoelectrocatalysis. ACS Applied Nano Materials, 2021, 4, 2702-2712.	2.4	5
6	Near-field enhancement by plasmonic antennas for photocatalytic Suzuki-Miyaura cross-coupling reactions. Journal of Catalysis, 2021, 397, 205-211.	3.1	14
7	Simultaneously Tuning the Defects and Surface Properties of Ta ₃ N ₅ Nanoparticles by Mg–Zr Codoping for Significantly Accelerated Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2021, 143, 10059-10064.	6.6	62
8	Synthesis of a Ga-doped La5Ti2Cu0.9Ag0.1O7S5 photocatalyst by thermal sulfidation for hydrogen evolution under visible light. Journal of Catalysis, 2021, 399, 230-236.	3.1	10
9	Unconventional, Gram-Scale Synthesis of a Molecular Dimer Organic Luminogen with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2021, 13, 40441-40450.	4.0	9
10	Direct visible photoexcitation on palladium nanocatalysts by chemisorption with distinct size dependence. Catalysis Science and Technology, 2021, 11, 2073-2080.	2.1	4
11	Cocatalyst engineering of a narrow bandgap Ga-La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} O ₇ S ₅ photocatalyst towards effectively enhanced water splitting. Journal of Materials Chemistry A, 2021, 9, 27485-27492.	5.2	16
12	Promoting Ni(II) Catalysis with Plasmonic Antennas. CheM, 2019, 5, 2879-2899.	5.8	39
13	Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers. ACS Photonics, 2019, 6, 314-321.	3.2	23
14	Visible light-driven selective hydrogenation of unsaturated aromatics in an aqueous solution by direct photocatalysis of Au nanoparticles. Catalysis Science and Technology, 2018, 8, 726-734.	2.1	23
15	Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light. ACS Catalysis, 2018, 8, 10331-10339.	5.5	54
16	Tuning the reduction power of visible-light photocatalysts of gold nanoparticles for selective reduction of nitroaromatics to azoxy-compounds—Tailoring the catalyst support. Applied Catalysis B: Environmental, 2017, 209, 69-79.	10.8	30
17	Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation. Dalton Transactions, 2017, 46, 10665-10672.	1.6	16
18	Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction. Journal of Physical Chemistry Letters, 2017, 8, 2526-2534.	2.1	50

QI ΧΙΑΟ

#	Article	IF	CITATIONS
19	Selective Oxidation of Aliphatic Alcohols using Molecular Oxygen at Ambient Temperature: Mixed-Valence Vanadium Oxide Photocatalysts. ACS Catalysis, 2016, 6, 3580-3588.	5.5	76
20	Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions. Chemical Communications, 2016, 52, 11567-11570.	2.2	32
21	Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters. ACS Applied Materials & Interfaces, 2016, 8, 16503-16510.	4.0	40
22	Highly efficient self-esterification of aliphatic alcohols using supported gold nanoparticles under mild conditions. Journal of Molecular Catalysis A, 2016, 423, 61-69.	4.8	9
23	Alloying Gold with Copper Makes for a Highly Selective Visible-Light Photocatalyst for the Reduction of Nitroaromatics to Anilines. ACS Catalysis, 2016, 6, 1744-1753.	5.5	164
24	Selective reduction of nitroaromatics to azoxy compounds on supported Ag–Cu alloy nanoparticles through visible light irradiation. Green Chemistry, 2016, 18, 817-825.	4.6	92
25	Catalytic Transformation of Aliphatic Alcohols to Corresponding Esters in O ₂ under Neutral Conditions Using Visible-Light Irradiation. Journal of the American Chemical Society, 2015, 137, 1956-1966.	6.6	116
26	Direct Photocatalytic Conversion of Aldehydes to Esters Using Supported Gold Nanoparticles under Visible Light Irradiation at Room Temperature. Journal of Physical Chemistry C, 2014, 118, 19062-19069.	1.5	59
27	Direct Photocatalysis for Organic Synthesis by Using Plasmonicâ€Metal Nanoparticles Irradiated with Visible Light. Chemistry - an Asian Journal, 2014, 9, 3046-3064.	1.7	95
28	Viable Photocatalysts under Solarâ€Spectrum Irradiation: Nonplasmonic Metal Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 2935-2940.	7.2	234
29	Visible Light-Driven Cross-Coupling Reactions at Lower Temperatures Using a Photocatalyst of Palladium and Gold Alloy Nanoparticles. ACS Catalysis, 2014, 4, 1725-1734.	5.5	181
30	Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chemistry, 2014, 16, 4272.	4.6	213
31	Au–Pd alloy nanoparticle catalyzed selective oxidation of benzyl alcohol and tandem synthesis of imines at ambient conditions. Catalysis Today, 2014, 235, 152-159.	2.2	37
32	Enhancing Catalytic Performance of Palladium in Gold and Palladium Alloy Nanoparticles for Organic Synthesis Reactions through Visible Light Irradiation at Ambient Temperatures. Journal of the American Chemical Society, 2013, 135, 5793-5801.	6.6	416
33	Photophysics and nonlinear absorption of 4,4′-diethynylazobenzene derivatives terminally capped with substituted aromatic rings. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 47-54.	2.0	5
34	Phenylene ethynylene azobenzenes with symmetrical peripheral chromophores: Synthesis, optical properties and photoisomerization behaviors study. Dyes and Pigments, 2012, 92, 626-632.	2.0	9
35	Synthesis and luminescent properties of carbazole end-capped phenylene ethynylene compounds. Journal of Luminescence, 2012, 132, 191-197.	1.5	11
36	The synthesis, crystal structure and photophysical properties of mononuclear platinum(II) 6-phenyl-[2,2′]bipyridinyl acetylide complexes. Dyes and Pigments, 2011, 88, 88-94.	2.0	13

#	Article	IF	CITATIONS
37	Synthesis, optical properties and crystal structures of carbazole end-capped phenylene ethynylene blue light-emitting materials. Journal of Luminescence, 2010, 130, 1183-1188.	1.5	4