Yan Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8093048/publications.pdf

Version: 2024-02-01

77 papers	1,620 citations	22 h-index	330025 37 g-index
81	81	81	803
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Phonon spectra of a two-dimensional solid dusty plasma modified by two-dimensional periodic substrates. Physical Review E, 2022, 105, 015202.	0.8	7
2	Determination of best particle tracking velocimetry method for two-dimensional dusty plasmas. Review of Scientific Instruments, 2022, 93, 033507.	0.6	2
3	Shear softening and hardening of a two-dimensional Yukawa solid. Physical Review E, 2022, 105, 035203.	0.8	2
4	Elastic–plastic transition of compressional shocks in a perfect 2D Yukawa crystal. Physics of Plasmas, 2022, 29, .	0.7	3
5	Directional locking in a two-dimensional Yukawa solid modulated by a two-dimensional periodic substrate. Physical Review E, 2022, 106, .	0.8	7
6	Head-on collision of compressional shocks in two-dimensional Yukawa systems. Physical Review E, 2021, 103, 013202.	0.8	8
7	Structure and dynamical properties of two-dimensional dusty plasmas on one-dimensional periodic substrates. Physics of Plasmas, 2021, 28, .	0.7	7
8	Plastic strain rate quantified from dislocation dynamics in dusty plasma shear flows. Physical Review E, 2021, 103, 063214.	0.8	5
9	Shock-induced melting of two-dimensional Yukawa systems from THâ^'PH Hugoniot curves. Physics of Plasmas, 2021, 28, .	0.7	5
10	Fluctuation theorem convergence in a viscoelastic medium demonstrated experimentally using a dusty plasma. Physical Review E, 2021, 104, 035207.	0.8	6
11	Determination of viscosity in shear-induced melting two-dimensional dusty plasmas using Green-Kubo relation. Physical Review E, 2021, 103, 013211.	0.8	8
12	Evolution of unsupported shocks in a two-dimensional Yukawa solid. Physics of Plasmas, 2021, 28, 103703.	0.7	6
13	Observation of the solid and liquid separation after the shock propagation in a two-dimensional Yukawa solid. Physics of Plasmas, 2021, 28, .	0.7	10
14	Modeling of small tungsten dust grains in EAST tokamak with NDS-BOUT++. Physics of Plasmas, 2021, 28, .	0.7	3
15	Continuous and discontinuous transitions in the depinning of two-dimensional dusty plasmas on a one-dimensional periodic substrate. Physical Review E, 2020, 102, 063203.	0.8	11
16	Universal relationship of compression shocks in two-dimensional Yukawa systems. Physical Review E, 2020, 101, 013203.	0.8	11
17	Oscillation-like diffusion of two-dimensional liquid dusty plasmas on one-dimensional periodic substrates with varied widths. Physics of Plasmas, 2020, 27, 033702.	0.7	9
18	Experimental Demonstration of a Dusty Plasma Ratchet Rectification and Its Reversal. Physical Review Letters, 2020, 124, 075001.	2.9	34

#	Article	IF	CITATIONS
19	Reply to "Comment on â€~Shear modulus of two-dimensional Yukawa or dusty-plasma solids obtained from the viscoelasticity in the liquid state'Â― Physical Review E, 2020, 101, 057202.	0.8	1
20	Shear modulus of two-dimensional Yukawa or dusty-plasma solids obtained from the viscoelasticity in the liquid state. Physical Review E, 2019, 99, 063206.	0.8	13
21	Pressure and energy of compressional shocks in two-dimensional Yukawa systems. Physical Review E, 2019, 100, 043203.	0.8	23
22	Depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate. Physical Review E, 2019, 100, 033207.	0.8	18
23	Dynamics and transport of magnetized two-dimensional Yukawa liquids. Reviews of Modern Plasma Physics, 2019, 3, 1.	2.2	8
24	Relationship between relaxation time and diffusion of magnetized two-dimensional Yukawa liquids. Physics of Plasmas, 2019, 26, 053704.	0.7	1
25	Adiabatic bulk modulus of elasticity for 2D liquid dusty plasmas. Physics of Plasmas, 2018, 25, .	0.7	6
26	Behaviour of twoâ€dimensional liquid dusty plasmas under perpendicular magnetic fields. Contributions To Plasma Physics, 2018, 58, 269-275.	0.5	3
27	Phonon spectra of two-dimensional liquid dusty plasmas on a one-dimensional periodic substrate. Physical Review E, 2018, 98, .	0.8	19
28	Structures and diffusion of two-dimensional dusty plasmas on one-dimensional periodic substrates. Physical Review E, 2018, 98, .	0.8	16
29	Dynamical heterogeneities of cold 2D Yukawa liquids. Journal Physics D: Applied Physics, 2018, 51, 245201.	1.3	15
30	Dissipative solitary wave at the interface of a binary complex plasma. Europhysics Letters, 2018, 122, 55001.	0.7	15
31	Bulk modulus of two-dimensional liquid dusty plasmas and its application. Physics of Plasmas, 2017, 24,	0.7	16
32	Studies of force field effects on thermal conductivity of complex plasmas. Physics of Plasmas, 2017, 24, 093701.	0.7	21
33	Specific heat and Grüneisen parameter for 2D liquid dusty plasmas. Physics of Plasmas, 2017, 24, 093707.	0.7	8
34	Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field. Physical Review E, 2017, 96, 053208.	0.8	19
35	Strong coupling effects on the relationship between internal energy and pressure for two-dimensional liquid dusty plasmas. Physics of Plasmas, 2016, 23, 113705.	0.7	10
36	Equations of state and diagrams of two-dimensional liquid dusty plasmas. Physics of Plasmas, 2016, 23, 093705.	0.7	23

#	Article	IF	CITATIONS
37	Particle position and velocity measurement in dusty plasmas using particle tracking velocimetry. Journal of Plasma Physics, 2016, 82, .	0.7	16
38	Skewness of steady-state current fluctuations in nonequilibrium systems. Physical Review E, 2016, 93, 042125.	0.8	10
39	Pressure of two-dimensional Yukawa liquids. Journal Physics D: Applied Physics, 2016, 49, 235203.	1.3	20
40	Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes. Review of Scientific Instruments, 2014, 85, 103509.	0.6	0
41	Flux rope dynamics in three dimensions. Plasma Physics and Controlled Fusion, 2014, 56, 095022.	0.9	6
42	Superdiffusion of two-dimensional Yukawa liquids due to a perpendicular magnetic field. Physical Review E, 2014, 90, 013105.	0.8	47
43	Laboratory observation of magnetic field growth driven by shear flow. Physics of Plasmas, 2014, 21, .	0.7	5
44	Longitudinal viscosity of two-dimensional Yukawa liquids. Physical Review E, 2013, 87, 013106.	0.8	25
45	Diagnostics for transport phenomena in strongly coupled dusty plasmas. Plasma Physics and Controlled Fusion, 2013, 55, 124004.	0.9	22
46	Flux ropes and 3D dynamics in the relaxation scaling experiment. Plasma Physics and Controlled Fusion, 2013, 55, 124005.	0.9	9
47	Frequency-dependent shear viscosity of a liquid two-dimensional dusty plasma. Physical Review E, 2012, 85, 066402.	0.8	22
48	Waves and instability in a one-dimensional microfluidic array. Physical Review E, 2012, 86, 046309.	0.8	9
49	Observation of Temperature Peaks due to Strong Viscous Heating in a Dusty Plasma Flow. Physical Review Letters, 2012, 109, 185002.	2.9	7 5
50	Energy transport in a shear flow of particles in a two-dimensional dusty plasma. Physical Review E, 2012, 86, 056403.	0.8	22
51	Errors in particle tracking velocimetry with high-speed cameras. Review of Scientific Instruments, 2011, 82, 053707.	0.6	76
52	Viscosity quantified in 2D dusty plasma experiment. , 2011, , .		0
53	Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma. Physical Review E, 2011, 83, 066402.	0.8	9
54	Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma. Physical Review E, 2011, 84, 046412.	0.8	62

#	Article	IF	CITATIONS
55	Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction. Physics of Plasmas, 2011, 18, .	0.7	19
56	Evolution of Shear-Induced Melting in a Dusty Plasma. Physical Review Letters, 2010, 104, 165003.	2.9	56
57	Mode Coupling for Phonons in a Single-Layer Dusty Plasma Crystal. Physical Review Letters, 2010, 105, 085004.	2.9	42
58	Viscoelasticity of 2D Liquids Quantified in a Dusty Plasma Experiment. Physical Review Letters, 2010, 105, 025002.	2.9	72
59	Identifying anomalous diffusion and melting in dusty plasmas. Physical Review E, 2010, 82, 036403.	0.8	33
60	Rapid heating and cooling in two-dimensional Yukawa systems. Physical Review E, 2008, 78, 026415.	0.8	45
61	Solid Superheating Observed in Two-Dimensional Strongly Coupled Dusty Plasma. Physical Review Letters, 2008, 100, 205007.	2.9	83
62	Non-Gaussian statistics and superdiffusion in a driven-dissipative dusty plasma. Physical Review E, 2008, 78, 046403.	0.8	50
63	Accurate particle position measurement from images. Review of Scientific Instruments, 2007, 78, 053704.	0.6	182
64	Pulsed laser deposition of LaNiO3 and YBa2Cu3O7â^î/LaNiO3 on SrTiO3 buffered (100) MgO. Thin Solid Films, 2005, 471, 248-251.	0.8	3
65	Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling. Physical Review E, 2004, 69, 021607.	0.8	28
66	Forced polarization of α-sapphire induced by coated LiNbO3 and LiTaO3 films. Applied Physics Letters, 2004, 84, 2623-2625.	1.5	1
67	Combinatorial studies of (1â^'x)Na0.5Bi0.5TiO3â^'xBaTiO3 thin-film chips. Applied Physics Letters, 2004, 85, 2319-2321.	1.5	51
68	Self-organization of nanostructured copper filament array by electrochemical deposition. Surface and Interface Analysis, 2004, 36, 197-198.	0.8	3
69	Morphology of Cultured Human Epidermal Melanocytes Observed by Atomic Force Microscopy. Pigment Cell & Melanoma Research, 2004, 17, 62-65.	4.0	24
70	Synthesis of hydroxyl-terminated copolymer of styrene and 4-vinylpyridine via nitroxide-mediated living radical polymerization. Journal of Applied Polymer Science, 2004, 91, 1842-1847.	1.3	12
71	Ferroelectric properties of Bi3.25â^'x/3La0.75Ti3â^'xNbxO12 films prepared by pulsed laser deposition. Solid State Communications, 2004, 129, 775-780.	0.9	18
72	Structural and optical properties of Bi4â^'xNdxTi3O12 thin films prepared by metal-organic solution deposition. Materials Letters, 2004, 58, 813-816.	1.3	16

YAN FENG

#	Article	IF	CITATION
73	Growth and characterization of Al2O3 gate dielectric films by low-pressure metalorganic chemical vapor deposition. Microelectronic Engineering, 2003, 66, 842-848.	1.1	19
74	Thermal stability and electrical properties of pulsed laser-deposited Hf-silicate thin films for high-kgate dielectric applications. Journal Physics D: Applied Physics, 2003, 36, 3051-3056.	1.3	32
75	Pulsed laser deposition of YBa2Cu3O7ÂÂ/I/LaNiO3trilayers (I Â SrTiO3, CeO2or Eu2CuO4) on (100) SrTiO3substrates. Superconductor Science and Technology, 2003, 16, 897-900.	1.8	2
76	Studies on the fatigue properties of SrBi2Ta2O9ferroelectric thin films. Ferroelectrics, 1999, 229, 171-176.	0.3	0
77	Thermal Conductivity of Dusty Plasmas through Molecular Dynamics Simulations. , 0, , .		5