Douglas J Taatjes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8092784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood, 2010, 115, 2292-2299.	1.4	224
2	Hydroxychloroquine directly reduces the binding of antiphospholipid antibody–β2-glycoprotein I complexes to phospholipid bilayers. Blood, 2008, 112, 1687-1695.	1.4	208
3	Morphological and cytochemical determination of cell death by apoptosis. Histochemistry and Cell Biology, 2008, 129, 33-43.	1.7	176
4	Human Monoclonal Antiphospholipid Antibodies Disrupt the Annexin A5 Anticoagulant Crystal Shield on Phospholipid Bilayers. American Journal of Pathology, 2003, 163, 1193-1200.	3.8	154
5	Group V Secretory Phospholipase A2Promotes Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 600-606.	2.4	116
6	Intramural Plasminogen Activator Inhibitor Type-1 and Coronary Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1979-1989.	2.4	113
7	Fibroblasts form a body-wide cellular network. Histochemistry and Cell Biology, 2004, 122, 7-15.	1.7	105
8	STRUCTURE AND DYNAMICS OF THE FUSION PORE IN LIVE CELLS. Cell Biology International, 2002, 26, 35-42.	3.0	92
9	Valves of the deep venous system: an overlooked risk factor. Blood, 2009, 114, 1276-1279.	1.4	88
10	Reducing protein oxidation reverses lung fibrosis. Nature Medicine, 2018, 24, 1128-1135.	30.7	88
11	Different Accumulation of Activated Extracellular Signal–Regulated Kinases (ERK 1/2) and Role in Cell-Cycle Alterations by Epidermal Growth Factor, Hydrogen Peroxide, or Asbestos in Pulmonary Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 405-413.	2.9	83
12	Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1018-L1025.	2.9	79
13	Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function. ELife, 2015, 4, .	6.0	70
14	Changes in Arterial Expression of Fibrinolytic System Proteins in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3294-3301.	2.4	61
15	Energy-Dependent Disassembly of Self-Assembled SNARE Complex:Â Observation at Nanometer Resolution Using Atomic Force Microscopy. Journal of the American Chemical Society, 2006, 128, 26-27.	13.7	55
16	Fibroblast spreading induced by connective tissue stretch involves intracellular redistribution of α- and β-actin. Histochemistry and Cell Biology, 2006, 125, 487-495.	1.7	55
17	Asbestos and cigarette smoke cause increased DNA strand breaks and necrosis in bronchiolar epithelial cells in vivo. Free Radical Biology and Medicine, 2000, 28, 1295-1299.	2.9	44
18	Attenuation of Neointimal Vascular Smooth Muscle Cellularity in Atheroma by Plasminogen Activator Inhibitor Type 1 (PAI-1). Journal of Histochemistry and Cytochemistry, 2004, 52, 1091-1099.	2.5	44

#	Article	IF	CITATIONS
19	Alpha smooth muscle actin distribution in cytoplasm and nuclear invaginations of connective tissue fibroblasts. Histochemistry and Cell Biology, 2007, 127, 523-530.	1.7	34
20	The Duration of Nuclear Extracellular Signal-Regulated Kinase 1 and 2 Signaling during Cell Cycle Reentry Distinguishes Proliferation from Apoptosis in Response to Asbestos. Cancer Research, 2004, 64, 6530-6536.	0.9	33
21	Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase ï€. JCI Insight, 2016, 1, .	5.0	32
22	COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis. Molecular Endocrinology, 2015, 29, 1156-1169.	3.7	30
23	Deleterious effects of lack of cardiac PAI-1 after coronary occlusion in mice and their pathophysiologic determinants. Histochemistry and Cell Biology, 2007, 128, 135-145.	1.7	28
24	Nanoscale imaging using differential expansion microscopy. Histochemistry and Cell Biology, 2020, 153, 469-480.	1.7	28
25	TERTIARY STRUCTURE OF THE HEPATIC CELL PROTEIN FIBRINOGEN IN FLUID REVEALED BY ATOMIC FORCE MICROSCOPY. Cell Biology International, 1997, 21, 715-726.	3.0	27
26	Probing the unseen structure and function of liver cells through atomic force microscopy. Seminars in Cell and Developmental Biology, 2018, 73, 13-30.	5.0	27
27	Ultrastructural Study of a Pituitary Adenoma (Prolactinoma) Within the Clivus Bone Using Immunoelectron Microscopy. Ultrastructural Pathology, 1993, 17, 637-642.	0.9	26
28	X-ray solution structure of the native neuronal porosome-synaptic vesicle complex: Implication in neurotransmitter release. Micron, 2014, 56, 37-43.	2.2	26
29	Cloned Î ² 1,4N-acetylgalactosaminyltransferase: subcellular localization and formation of disulfide bonded species. Glycoconjugate Journal, 1996, 13, 213-223.	2.7	24
30	The Binding of Thyroid Transcription Factor-1 and Hepatocyte Paraffin 1 to Mitochondrial Proteins in Hepatocytes. American Journal of Clinical Pathology, 2006, 125, 722-726.	0.7	24
31	Attenuation of Accumulation of Neointimal Lipid by Pioglitazone in Mice Genetically Deficient in Insulin Receptor Substrate-2 and Apolipoprotein E. Journal of Histochemistry and Cytochemistry, 2005, 53, 603-610.	2.5	23
32	3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex. Histochemistry and Cell Biology, 2012, 137, 703-718.	1.7	23
33	Paclitaxel and vinorelbine cause synergistic increases in apoptosis but not in microtubular disruption in human lung adenocarcinoma cells (A-549). Histochemistry and Cell Biology, 2004, 121, 115-121.	1.7	21
34	Atomic force microscopy: High resolution dynamic imaging of cellular and molecular structure in health and disease. Journal of Cellular Physiology, 2013, 228, 1949-1955.	4.1	21
35	Quality assessment of atomic force microscopy probes by scanning electron microscopy: Correlation of tip structure with rendered images. Microscopy Research and Technique, 1999, 44, 312-326.	2.2	20
36	Localization of CD44 at the Invasive Margin of Glioblastomas by Immunoelectron Microscopy. Ultrastructural Pathology, 1997, 21, 517-525.	0.9	19

#	Article	IF	CITATIONS
37	Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy. Journal of Neuro-Oncology, 1998, 38, 1-10.	2.9	19
38	Proteome of the porosome complex in human airway epithelia: Interaction with the cystic fibrosis transmembrane conductance regulator (CFTR). Journal of Proteomics, 2014, 96, 82-91.	2.4	18
39	Imaging of collagen type III in fluid by atomic force microscopy. Microscopy Research and Technique, 1999, 44, 347-352.	2.2	17
40	Delineation of the evolution of compositional changes in atheroma. Histochemistry and Cell Biology, 2002, 118, 59-68.	1.7	17
41	The magnitude and temporal dependence of apoptosis early after myocardial ischemia with or without reperfusion. FASEB Journal, 2009, 23, 1177-1185.	0.5	17
42	Aquaporin-assisted and ER-mediated mitochondrial fission: A hypothesis. Micron, 2013, 47, 50-58.	2.2	17
43	Imaging aspects of cardiovascular disease at the cell and molecular level. Histochemistry and Cell Biology, 2008, 130, 235-245.	1.7	16
44	Neuronal porosome lipidome. Journal of Cellular and Molecular Medicine, 2014, 18, 1927-1937.	3.6	15
45	Tubules of the trans Golgi apparatus visualized by immunoelectron microscopy. Histochemistry and Cell Biology, 1998, 109, 545-553.	1.7	14
46	Proteome of the insulin-secreting Min6 cell porosome complex: Involvement of Hsp90 in its assembly and function. Journal of Proteomics, 2015, 114, 83-92.	2.4	14
47	Inhaled Asbestos Exacerbates Atherosclerosis in Apolipoprotein E–Deficient Mice via CD4 ⁺ T Cells. Environmental Health Perspectives, 2008, 116, 1218-1225.	6.0	13
48	A novel dual staining method for identification of apoptotic cells reveals a modest apoptotic response in infarcted mouse myocardium. Histochemistry and Cell Biology, 2007, 128, 275-283.	1.7	12
49	Functional Reconstitution of the Insulin-Secreting Porosome Complex in Live Cells. Endocrinology, 2016, 157, 54-60.	2.8	12
50	Immunoelectron Microscopic Localization of Plasminogen Activator Inhibitor Type 1 (PAI-1) in Smooth Muscle Cells from Morphologically Normal and Atherosclerotic Human Arteries. Ultrastructural Pathology, 1997, 21, 527-536.	0.9	11
51	The effects of aging on the intimal region of the human saphenous vein: insights from multimodal microscopy and quantitative image analysis. Histochemistry and Cell Biology, 2012, 138, 435-445.	1.7	11
52	Prolonged Storage of Fixative for Electron Microscopy: Effects on Tissue Preservation for Diagnostic Specimens. Ultrastructural Pathology, 1997, 21, 195-200.	0.9	9
53	BINDING CONTRIBUTION BETWEEN SYNAPTIC VESICLE MEMBRANE AND PLASMA MEMBRANE PROTEINS IN NEURONS: AN AFM STUDY. Cell Biology International, 1998, 22, 649-655.	3.0	9
54	Visualization of macro-immune complexes in the antiphospholipid syndrome by multi-modal microscopy imaging. Micron, 2017, 100, 23-29.	2.2	9

#	Article	IF	CITATIONS
55	Human skeletal muscle cell atlas: Unraveling cellular secrets utilizing â€~muscle-on-a-chip', differential expansion microscopy, mass spectrometry, nanothermometry and machine learning. Micron, 2019, 117, 55-59.	2.2	9
56	Cell adhesion molecule 1 (CADM1) is ubiquitously present in the endothelium and smooth muscle cells of the human macro- and micro-vasculature. Histochemistry and Cell Biology, 2012, 138, 815-820.	1.7	8
57	Comparative immunogenicity of decellularized wild type and alpha 1,3 galactosyltransferase knockout pig lungs. Biomaterials, 2021, 276, 121029.	11.4	8
58	Quantitative Analysis of Atherosclerotic Lesion Composition in Mice. Methods in Molecular Biology, 2006, 319, 137-152.	0.9	8
59	Attenuation of apoptosis and the eye of the beholder. Coronary Artery Disease, 2008, 19, 55-58.	0.7	7
60	Insights into the pathophysiology of the antiphospholipid syndrome provided by atomic force microscopy. Micron, 2012, 43, 851-862.	2.2	7
61	In focus in HCB. Histochemistry and Cell Biology, 2017, 147, 303-305.	1.7	7
62	Foreword to the special issue on applications of atomic force microscopy in cell biology. Seminars in Cell and Developmental Biology, 2018, 73, 1-3.	5.0	7
63	Glutaredoxin deficiency promotes activation of the transforming growth factor beta pathway in airway epithelial cells, in association with fibrotic airway remodeling. Redox Biology, 2020, 37, 101720.	9.0	7
64	Cryofixation, Cryosubstitution, and Immunoelectron Microscopy: Potential Role in Diagnostic Pathology. Ultrastructural Pathology, 1996, 20, 223-230.	0.9	6
65	Histochemistry and Cell Biology: 61Âyears and not tired at all. Histochemistry and Cell Biology, 2019, 152, 1-11.	1.7	6
66	Binding forces of hepatic microsomal and plasma membrane proteins in normal and pancreatitic rats: An AFM force spectroscopic study. Microscopy Research and Technique, 1999, 44, 363-367.	2.2	5
67	Atomic Force Microscopy in the Study of Macromolecular Interactions in Hemostasis and Thrombosis: Utility for Investigation of the Antiphospholipid Syndrome. , 0, , 267-286.		5
68	Viewing Dynamic Interactions of Proteins and a Model Lipid Membrane with Atomic Force Microscopy. Methods in Molecular Biology, 2012, 931, 259-293.	0.9	4
69	In focus in HCB. Histochemistry and Cell Biology, 2018, 150, 1-2.	1.7	4
70	Introduction: 3D imaging in lung biology. Histochemistry and Cell Biology, 2021, 155, 159-162.	1.7	4
71	The Shared Core Resource as a Partner in Innovative Scientific Research: Illustration from an Academic Microscopy Imaging Center. Journal of Biomolecular Techniques, 2022, 33, 3fc1f5fe.2507f36c.	1.5	4
72	The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochemistry and Cell Biology, 2015, 143, 339-368.	1.7	3

#	Article	IF	CITATIONS
73	The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochemistry and Cell Biology, 2016, 145, 239-274.	1.7	3
74	In focus in HCB. Histochemistry and Cell Biology, 2017, 148, 1-2.	1.7	3
75	Reimagining the antiphospholipid syndrome, an enigmatic thrombophilic disorder, through the looking glass of microscopic imaging. Histochemistry and Cell Biology, 2018, 150, 529-543.	1.7	3
76	Self-Assembly and Biogenesis of the Cellular Membrane are Dictated by Membrane Stretch and Composition. Journal of Physical Chemistry B, 2019, 123, 6997-7005.	2.6	3
77	In focus in HCB. Histochemistry and Cell Biology, 2019, 152, 391-395.	1.7	3
78	The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochemistry and Cell Biology, 2006, 126, 743-788.	1.7	2
79	In focus in HCB. Histochemistry and Cell Biology, 2017, 148, 217-218.	1.7	2
80	In focus in HCB. Histochemistry and Cell Biology, 2017, 148, 575-576.	1.7	2
81	Life and its traces in Antarctica's McMurdo Dry Valley paleolakes: a survey of preservation. Micron, 2020, 131, 102818.	2.2	2
82	Fluorine detection in the lung tissue of a worker with interstitial pulmonary fibrosis and long-term occupational exposure to polytetrafluoroethylene and perfluorooctanoic acid. Ultrastructural Pathology, 2020, 44, 496-500.	0.9	2
83	Recent progress in histochemistry. Histochemistry and Cell Biology, 2007, 128, 557-594.	1.7	1
84	The Histochemistry and Cell Biology compendium: a review of 2012. Histochemistry and Cell Biology, 2013, 139, 815-846.	1.7	1
85	In Focus in HCB. Histochemistry and Cell Biology, 2016, 146, 363-365.	1.7	1
86	In focus in HCB. Histochemistry and Cell Biology, 2016, 146, 513-514.	1.7	1
87	In focus in HCB. Histochemistry and Cell Biology, 2017, 147, 1-3.	1.7	1
88	In focus in HCB. Histochemistry and Cell Biology, 2018, 150, 575-578.	1.7	1
89	In focus in HCB. Histochemistry and Cell Biology, 2018, 150, 403-405.	1.7	1
90	In focus in HCB. Histochemistry and Cell Biology, 2018, 149, 1-2.	1.7	1

#	Article	IF	CITATIONS
91	In focus in HCB. Histochemistry and Cell Biology, 2019, 152, 85-87.	1.7	1
92	In focus in HCB. Histochemistry and Cell Biology, 2021, 156, 79-82.	1.7	1
93	Quality assessment of atomic force microscopy probes by scanning electron microscopy: Correlation of tip structure with rendered images. , 1999, 44, 312.		1
94	Imaging of collagen type III in fluid by atomic force microscopy. , 1999, 44, 347.		1
95	In focus in HCB. Histochemistry and Cell Biology, 2021, 156, 405-408.	1.7	1
96	In focus in HCB. Histochemistry and Cell Biology, 2022, 157, 1-5.	1.7	1
97	In focus in HCB. Histochemistry and Cell Biology, 2022, , .	1.7	1
98	In focus in HCB. Histochemistry and Cell Biology, 2022, 158, 1-4.	1.7	1
99	Recent progress in histochemistry and cell biology: the state of the art 2005. Histochemistry and Cell Biology, 2005, 124, 547-574.	1.7	Ο
100	Cell biology of protein glycosylation: a celebration of the career of Jürgen Roth on the occasion of his 70th birthday. Cell Biology International, 2014, 38, 547-552.	3.0	0
101	The Histochem Cell Biol conspectus: the year 2013 in review. Histochemistry and Cell Biology, 2014, 141, 337-363.	1.7	Ο
102	In Focus in HCB. Histochemistry and Cell Biology, 2016, 146, 117-118.	1.7	0
103	In Focus in HCB. Histochemistry and Cell Biology, 2016, 146, 237-238.	1.7	Ο
104	In focus in HCB. Histochemistry and Cell Biology, 2017, 148, 473-475.	1.7	0
105	Âln focus in HCB. Histochemistry and Cell Biology, 2017, 147, 543-544.	1.7	Ο
106	In focus in HCB. Histochemistry and Cell Biology, 2017, 147, 651-652.	1.7	0
107	In focus in HCB. Histochemistry and Cell Biology, 2017, 148, 103-104.	1.7	0
108	In focus in HCB. Histochemistry and Cell Biology, 2017, 147, 413-414.	1.7	0

#	Article	IF	CITATIONS
109	In focus in HCB. Histochemistry and Cell Biology, 2017, 148, 343-344.	1.7	Ο
110	In focus in HCB. Histochemistry and Cell Biology, 2018, 149, 193-195.	1.7	0
111	In focus in HCB. Histochemistry and Cell Biology, 2018, 149, 449-450.	1.7	0
112	In focus in HCB. Histochemistry and Cell Biology, 2018, 150, 301-302.	1.7	0
113	In focus in HCB. Histochemistry and Cell Biology, 2018, 150, 207-208.	1.7	Ο
114	In focus in HCB. Histochemistry and Cell Biology, 2018, 150, 103-105.	1.7	0
115	In focus in HCB. Histochemistry and Cell Biology, 2018, 149, 545-546.	1.7	Ο
116	In focus in HCB. Histochemistry and Cell Biology, 2018, 149, 111-112.	1.7	0
117	In focus in HCB. Histochemistry and Cell Biology, 2019, 151, 279-281.	1.7	Ο
118	In focus in HCB. Histochemistry and Cell Biology, 2019, 152, 249-251.	1.7	0
119	In focus in HCB. Histochemistry and Cell Biology, 2019, 152, 175-176.	1.7	Ο
120	In focus in HCB. Histochemistry and Cell Biology, 2019, 151, 97-99.	1.7	0
121	In Focus in HCB. Histochemistry and Cell Biology, 2019, 151, 457-459.	1.7	Ο
122	In focus in HCB. Histochemistry and Cell Biology, 2019, 151, 367-368.	1.7	0
123	In focus in HCB. Histochemistry and Cell Biology, 2019, 151, 199-200.	1.7	Ο
124	Quantitative pixel intensity- and color-based image analysis on minimally compressed files: implications for whole-slide imaging. Histochemistry and Cell Biology, 2019, 152, 13-23.	1.7	0
125	In focus in HCB. Histochemistry and Cell Biology, 2019, 152, 319-321.	1.7	0
126	Âln focus in HCB. Histochemistry and Cell Biology, 2019, 151, 1-3.	1.7	0

#	Article	IF	CITATIONS
127	In focus in HCB. Histochemistry and Cell Biology, 2020, 153, 1-3.	1.7	0
128	In focus in HCB. Histochemistry and Cell Biology, 2020, 154, 1-5.	1.7	0
129	In focus in HCB. Histochemistry and Cell Biology, 2020, 153, 129-133.	1.7	0
130	In focus in HCB. Histochemistry and Cell Biology, 2020, 153, 379-384.	1.7	0
131	In focus in HCB. Histochemistry and Cell Biology, 2020, 154, 247-253.	1.7	0
132	In focus in HCB. Histochemistry and Cell Biology, 2020, 154, 117-122.	1.7	0
133	In focus in HCB. Histochemistry and Cell Biology, 2020, 153, 193-197.	1.7	0
134	In focus in HCB. Histochemistry and Cell Biology, 2020, 153, 289-293.	1.7	0
135	In focus in HCB. Histochemistry and Cell Biology, 2020, 153, 71-75.	1.7	Ο
136	In focus in HCB. Histochemistry and Cell Biology, 2021, 155, 319-322.	1.7	0
137	In focus in HCB. Histochemistry and Cell Biology, 2021, 155, 435-438.	1.7	0
138	In focus in HCB. Histochemistry and Cell Biology, 2021, 155, 525-528.	1.7	0
139	In focus in HCB. Histochemistry and Cell Biology, 2021, 155, 619-621.	1.7	Ο
140	In focus in HCB. Histochemistry and Cell Biology, 2021, 156, 1-4.	1.7	0
141	In focus in HCB. Histochemistry and Cell Biology, 2021, 156, 193-196.	1.7	Ο
142	In focus in HCB. Histochemistry and Cell Biology, 2021, 155, 1-8.	1.7	0
143	In focus in HCB. Histochemistry and Cell Biology, 2021, 156, 297-299.	1.7	0
144	Subsequent to Its Endocytosis by Megakaryocytes, Factor V Is Trafficked to the [Italic]cis[/Italic]-Golgi Network Prior to Its Storage in α-Granules Blood, 2006, 108, 1697-1697.	1.4	0

#	Article	IF	CITATIONS
145	Cell Adhesion Molecule 1 (CADM1), a Novel Venous Thrombosis Risk Factor, Is Ubiquitously Present In Vascular Endothelium and Smooth Muscle Cells. Blood, 2010, 116, 4316-4316.	1.4	0
146	Mechanism of Membrane Biogenesis. FASEB Journal, 2018, 32, 671.11.	0.5	0
147	In focus in HCB. Histochemistry and Cell Biology, 2020, 154, 347-354.	1.7	Ο
148	Âln focus in HCB. Histochemistry and Cell Biology, 2020, 154, 597-607.	1.7	0
149	In focus in HCB. Histochemistry and Cell Biology, 2021, , 1.	1.7	Ο
150	In focus in HCB. Histochemistry and Cell Biology, 2022, 157, 123-126.	1.7	0
151	In focus in HCB. Histochemistry and Cell Biology, 2022, 157, 389-391.	1.7	Ο
152	In focus in HCB. Histochemistry and Cell Biology, 2022, , .	1.7	0