
Praveen Chandrashekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8092489/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations. Communications in Computational Physics, 2013, 14, 1252-1286.	1.7	183
2	A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity. SIAM Journal of Scientific Computing, 2015, 37, B382-B402.	2.8	68
3	Entropy Stable Finite Volume Scheme for Ideal Compressible MHD on 2-D Cartesian Meshes. SIAM Journal on Numerical Analysis, 2016, 54, 1313-1340.	2.3	62
4	Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations. Communications in Computational Physics, 2016, 19, 1111-1140.	1.7	36
5	Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113575.	6.6	35
6	Well-Balanced Nodal Discontinuous Galerkin Method for Euler Equations with Gravity. Journal of Scientific Computing, 2017, 71, 1062-1093.	2.3	30
7	High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws. Computers and Fluids, 2021, 219, 104858.	2.5	30
8	Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2018, 375, 1059-1090.	3.8	26
9	High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4209-4246.	4.4	24
10	Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Computers and Fluids, 2019, 190, 49-76.	2.5	17
11	A second-order, discretely well-balanced finite volume scheme for euler equations with gravity. Computers and Fluids, 2019, 181, 292-313.	2.5	17
12	A finite volume method for a two-phase multicomponent polymer flooding. Journal of Computational Physics, 2014, 275, 667-695.	3.8	15
13	Globally constraint-preserving FR/DG scheme for Maxwell's equations at all orders. Journal of Computational Physics, 2019, 394, 298-328.	3.8	15
14	A path conservative finite volume method for a shear shallow water model. Journal of Computational Physics, 2020, 413, 109457.	3.8	11
15	Vertex-centroid finite volume scheme on tetrahedral grids for conservation laws. Computers and Mathematics With Applications, 2013, 65, 58-74.	2.7	10
16	Goal-oriented uncertainty propagation using stochastic adjoints. Computers and Fluids, 2012, 66, 10-20.	2.5	9
17	Generalized Riemann problem-based upwind scheme for the vorticity transport equations. Computers and Fluids, 2016, 132, 10-18.	2.5	9
18	Positivity preservation, stencil selection and applications of LSKUM to 3-D inviscid flows. Computers and Fluids, 2009, 38, 1481-1494.	2.5	8

PRAVEEN CHANDRASHEKAR

#	Article	IF	CITATIONS
19	Discontinuous Galerkin method for Navier–Stokes equations using kinetic flux vector splitting. Journal of Computational Physics, 2013, 233, 527-551.	3.8	8
20	An Efficient Numerical Algorithm for the Inversion of an Integral Transform Arising in Ultrasound Imaging. Journal of Mathematical Imaging and Vision, 2015, 53, 78-91.	1.3	8
21	Positivity-preserving high-order discontinuous Galerkin schemes for Ten-Moment Gaussian closure equations. Journal of Computational Physics, 2017, 339, 370-395.	3.8	7
22	An entropy stable finite volume scheme for the two dimensional Navier–Stokes equations on triangular grids. Applied Mathematics and Computation, 2017, 314, 257-286.	2.2	7
23	Positivity-Preserving Finite Difference WENO Scheme for Ten-Moment Equations with Source Term. Journal of Scientific Computing, 2020, 82, 1.	2.3	7
24	Globally divergence-free DG scheme for ideal compressible MHD. Communications in Applied Mathematics and Computational Science, 2021, 16, 59-98.	1.8	7
25	Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET. Lecture Notes in Computational Science and Engineering, 2016, , 381-402.	0.3	6
26	A discontinuous Galerkin method for a two dimensional reduced resistive MHD model. Computers and Fluids, 2019, 190, 178-191.	2.5	5
27	A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint. Journal of Scientific Computing, 2019, 79, 79-102.	2.3	5
28	Single-Step Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Method for 1-D Euler Equations. Communications on Applied Mathematics and Computation, 2020, 2, 541-579.	1.7	5
29	Finite volume discretization of heat equation and compressible Navier–Stokes equations with weak Dirichlet boundary condition on triangular grids. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2016, 8, 174-193.	1.1	4
30	On limiting for higher order discontinuous Galerkin method for 2D Euler equations. Bulletin of the Brazilian Mathematical Society, 2016, 47, 335-345.	0.8	4
31	A variational approach to estimate incompressible fluid flows. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2017, 127, 175-201.	0.1	4
32	Optimal, globally constraint-preserving, DG(TD)2 schemes for computational electrodynamics based on two-derivative Runge-Kutta timestepping and multidimensional generalized Riemann problem solvers – A von Neumann stability analysis. Journal of Computational Physics, 2020, 408, 109238.	3.8	4
33	A variational approach to optical flow estimation of unsteady incompressible flows. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2015, 7, 149-167.	1.1	3
34	Multi-level WENO schemes with an adaptive characteristic-wise reconstruction for system of Euler equations. Computers and Fluids, 2022, 239, 105386.	2.5	3
35	Stabilized discontinuous Galerkin scheme for the magnetic induction equation. Applied Numerical Mathematics, 2019, 137, 116-135.	2.1	1
36	Constraint Preserving Discontinuous Galerkin Method for Ideal Compressible MHD on 2-D Cartesian Grids. Journal of Scientific Computing, 2020, 84, 1.	2.3	1

#	Article	IF	CITATIONS
37	Numerical stabilization of the Boussinesq system using boundary feedback control. Computers and Mathematics With Applications, 2021, 89, 163-183.	2.7	1
38	A Runge–Kutta Discontinuous Galerkin Scheme for the Ideal Magnetohydrodynamical Model. Springer Proceedings in Mathematics and Statistics, 2018, , 335-344.	0.2	1
39	Lax-Wendroff flux reconstruction method for hyperbolic conservation laws. Journal of Computational Physics, 2022, , 111423.	3.8	1
40	EXAMAG: Towards Exascale Simulations of the Magnetic Universe. Lecture Notes in Computational Science and Engineering, 2020, , 331-350.	0.3	0