List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8092436/publications.pdf

Version: 2024-02-01

MONICA C TURNER

#	Article	IF	CITATIONS
1	The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. Ecological Monographs, 2022, 92, e01485.	5.4	26
2	A short-interval reburn catalyzes departures from historical structure and composition in a mesic mixed-conifer forest. Forest Ecology and Management, 2022, 504, 119814.	3.2	18
3	Limitations to Propagule Dispersal Will Constrain Postfire Recovery of Plants and Fungi in Western Coniferous Forests. BioScience, 2022, 72, 347-364.	4.9	21
4	Combined effects of climate and fireâ€driven vegetation change constrain the distributions of forest vertebrates during the 21st century. Diversity and Distributions, 2022, 28, 727-744.	4.1	1
5	Young forests and fire: Using lidar–imagery fusion to explore fuels and burn severity in a subalpine forest reburn. Ecosphere, 2022, 13, .	2.2	3
6	Post-disturbance reorganization of forest ecosystems in a changing world. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	69
7	Can we manage a future with more fire? Effectiveness of defensible space treatment depends on housing amount and configuration. Landscape Ecology, 2021, 36, 309-330.	4.2	21
8	The propagule doesn't fall far from the tree, especially after shortâ€interval, highâ€severity fire. Ecology, 2021, 102, e03194.	3.2	27
9	Land-use intensity mediates ecosystem service tradeoffs across regional social-ecological systems. Ecosystems and People, 2021, 17, 264-278.	3.2	21
10	Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, 2021, 5, 504-512.	7.8	41
11	Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. Global Change Biology, 2021, 27, 4339-4351.	9.5	42
12	Ready, Set, Go: Community Science Field Campaign Reveals Habitat Preferences of Nonnative Asian Earthworms in an Urban Landscape. BioScience, 2021, 71, 280-291.	4.9	5
13	Can wildland fire management alter 21stâ€century subalpine fire and forests in Grand Teton National Park, Wyoming, <scp>USA</scp> ?. Ecological Applications, 2020, 30, e02030.	3.8	21
14	Topographic position amplifies consequences of short-interval stand-replacing fires on postfire tree establishment in subalpine conifer forests. Forest Ecology and Management, 2020, 478, 118523.	3.2	28
15	Simulating forest resilience: A review. Global Ecology and Biogeography, 2020, 29, 2082-2096.	5.8	51
16	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	12.6	576
17	Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190104.	4.0	333
18	Climate change, ecosystems and abrupt change: science priorities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190105.	4.0	169

#	Article	IF	CITATIONS
19	Effects of bird community dynamics on the seasonal distribution of cultural ecosystem services. Ambio, 2019, 48, 280-292.	5.5	17
20	No evidence of co-facilitation between a non-native Asian earthworm (Amynthas tokioensis) and invasive common buckthorn (Rhamnus cathartica) in experimental mesocosms. Biological Invasions, 2019, 21, 111-122.	2.4	6
21	Comparing the effects of climate and land use on surface water quality using future watershed scenarios. Science of the Total Environment, 2019, 693, 133484.	8.0	20
22	Feast not famine: Nitrogen pools recover rapidly in 25â€yrâ€old postfire lodgepole pine. Ecology, 2019, 100, e02626.	3.2	9
23	Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proceedings of the United States of America, 2019, 116, 11319-11328.	7.1	156
24	Postâ€fire vegetation and climate dynamics in lowâ€elevation forests over the last three millennia in Yellowstone National Park. Ecography, 2019, 42, 1226-1236.	4.5	4
25	Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7575-7580.	7.1	348
26	Reply to Drescher: Interdisciplinary collaboration is essential to understand and implement climate-resilient strategies in cities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26155-26156.	7.1	2
27	Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecological Monographs, 2019, 89, e01340.	5.4	69
28	It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology, 2018, 99, 966-977.	3.2	87
29	Current and historical land use influence soilâ€based ecosystem services in an urban landscape. Ecological Applications, 2018, 28, 643-654.	3.8	61
30	Understanding relationships among ecosystem services across spatial scales and over time. Environmental Research Letters, 2018, 13, 054020.	5.2	76
31	Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecological Applications, 2018, 28, 119-134.	3.8	34
32	Physical drivers of seagrass spatial configuration: the role of thresholds. Landscape Ecology, 2018, 33, 2253-2272.	4.2	17
33	Microhabitat conditions and landscape pattern explain nocturnal rodent activity, but not seed removal, in burned and unburned lodgepole pine forests. Landscape Ecology, 2018, 33, 1895-1909.	4.2	9
34	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	12.8	167
35	Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone. Forest Ecology and Management, 2018, 430, 460-471.	3.2	23
36	Abrupt Change in Ecological Systems: Inference and Diagnosis. Trends in Ecology and Evolution, 2018, 33, 513-526.	8.7	178

#	Article	IF	CITATIONS
37	Landscape dynamics of floral resources affect the supply of a biodiversity-dependent cultural ecosystem service. Landscape Ecology, 2017, 32, 415-428.	4.2	25
38	Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4582-4590.	7.1	536
39	How do land-use legacies affect ecosystem services in United States cultural landscapes?. Landscape Ecology, 2017, 32, 2205-2218.	4.2	44
40	Using Spatial Statistics and Landscape Metrics to Compare Disturbance Mosaics. , 2017, , 175-190.		5
41	Understanding Landscape Metrics. , 2017, , 45-63.		9
42	Regional and Continental-Scale Perspectives on Landscape Pattern. , 2017, , 157-173.		0
43	Species richness alone does not predict cultural ecosystem service value. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3774-3779.	7.1	73
44	Historical foundations and future directions in macrosystems ecology. Ecology Letters, 2017, 20, 147-157.	6.4	49
45	Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environmental Change, 2017, 47, 37-50.	7.8	229
46	When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 2017, 67, 820-833.	4.9	114
47	Ecosystem Modeling for the 21st Century. Ecosystems, 2017, 20, 211-214.	3.4	12
48	Twenty Years of Ecosystems: Emerging Questions and Challenges. Ecosystems, 2017, 20, 1-3.	3.4	20
49	Spatial fit between water quality policies and hydrologic ecosystem services in an urbanizing agricultural landscape. Landscape Ecology, 2017, 32, 59-75.	4.2	27
50	Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecological Applications, 2017, 27, 632-643.	3.8	59
51	Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biological Invasions, 2017, 19, 73-88.	2.4	37
52	Simulated fire behaviour in young, postfire lodgepole pine forests. International Journal of Wildland Fire, 2017, 26, 852.	2.4	15
53	High and dry: postâ€fire tree seedling establishment in subalpine forests decreases with postâ€fire drought and large standâ€replacing burn patches. Global Ecology and Biogeography, 2016, 25, 655-669.	5.8	213
54	Deterministic and stochastic processes lead to divergence in plant communities 25Âyears after the 1988 Yellowstone fires. Ecological Monographs, 2016, 86, 327-351.	5.4	75

MONICA G TURNER

#	Article	IF	CITATIONS
55	Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities. Ecological Applications, 2016, 26, 42-54.	3.8	11
56	Landscape patterns of bioenergy in a changing climate: implicationsÂfor crop allocation and landâ€use competition. Ecological Applications, 2016, 26, 515-529.	3.8	10
57	Twentyâ€four years after the Yellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?. Ecology, 2016, 97, 1260-1273.	3.2	66
58	Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 2016, 14, 369-378.	4.0	947
59	Landscape variation in tree regeneration and snag fall drive fuel loads in 24â€year old postâ€fire lodgepole pine forests. Ecological Applications, 2016, 26, 2424-2438.	3.8	22
60	Regeneration of montane forests 24Âyears after the 1988 Yellowstone fires: A fire atalyzed shift in lower treelines?. Ecosphere, 2016, 7, e01410.	2.2	82
61	From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale. Environmental Modelling and Software, 2016, 85, 80-97.	4.5	44
62	Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13075-13080.	7.1	65
63	Drivers and trends in landscape patterns of stand-replacing fire in forests of the US Northern Rocky Mountains (1984–2010). Landscape Ecology, 2016, 31, 2367-2383.	4.2	89
64	Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology, 2016, 97, 2272-2282.	3.2	83
65	Shifting ecological filters mediate postfire expansion of seedling aspen (Populus tremuloides) in Yellowstone. Forest Ecology and Management, 2016, 362, 218-230.	3.2	44
66	Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere, 2015, 6, 1-19.	2.2	91
67	Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecology and Society, 2015, 20, .	2.3	70
68	Landscape Ecology in Theory and Practice. , 2015, , .		338
69	Introduction to Landscape Ecology and Scale. , 2015, , 1-32.		6
70	Landscape Metrics. , 2015, , 97-142.		10
71	Ecosystem Processes in Heterogeneous Landscapes. , 2015, , 287-332.		9
72	Landscape Dynamics in a Rapidly Changing World. , 2015, , 333-381.		3

72 Landscape Dynamics in a Rapidly Changing World. , 2015, , 333-381.

5

#	Article	IF	CITATIONS
73	Celebrating the past, embracing the future. Frontiers in Ecology and the Environment, 2015, 13, 291-291.	4.0	7
74	Causes of Landscape Pattern. , 2015, , 33-62.		2
75	Introduction to Models. , 2015, , 63-95.		7
76	Spatial Statistics. , 2015, , 143-174.		2
77	Landscape Disturbance Dynamics. , 2015, , 175-228.		15
78	Organisms and Landscape Pattern. , 2015, , 229-285.		4
79	Earth Stewardship: An Initiative by the Ecological Society of America to Foster Engagement to Sustain Planet Earth. Ecology and Ethics, 2015, , 173-194.	1.0	14
80	Bird Communities and Biomass Yields in Potential Bioenergy Grasslands. PLoS ONE, 2014, 9, e109989.	2.5	20
81	Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecological Applications, 2014, 24, 1608-1625.	3.8	73
82	Logging Legacies Affect Insect Pollinator Communities in Southern Appalachian Forests. Southeastern Naturalist, 2014, 13, 317.	0.4	27
83	Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15120-15125.	7.1	118
84	Carbon fluxes and storage in forests and landscapes. , 2014, , 139-166.		7
85	Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12149-12154.	7.1	342
86	Predicting Microstegium vimineum invasion in natural plant communities of the southern Blue Ridge Mountains, USA. Biological Invasions, 2013, 15, 1217-1230.	2.4	13
87	A 27-year perspective on landscape ecology from the US-IALE annual meeting. Landscape Ecology, 2013, 28, 1845-1848.	4.2	6
88	Salvage harvest effects on advance tree regeneration, soil nitrogen, and fuels following mountain pine beetle outbreak in lodgepole pine. Forest Ecology and Management, 2013, 291, 228-239.	3.2	27
89	Evaluating post-outbreak management effects on future fuel profiles and stand structure in bark beetle-impacted forests of Greater Yellowstone. Forest Ecology and Management, 2013, 303, 160-174.	3.2	27
90	Performance and population dynamics of a native understory herb differ between young and old forest stands in the Southern Appalachians. Forest Ecology and Management, 2013, 304, 444-454.	3.2	3

#	Article	IF	CITATIONS
91	Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landscape Ecology, 2013, 28, 1081-1097.	4.2	245
92	Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglasâ€fir forests. Ecology, 2013, 94, 2475-2486.	3.2	90
93	Postfire changes in forest carbon storage over a 300â€year chronosequence of <i>Pinus contorta</i> â€dominated forests. Ecological Monographs, 2013, 83, 49-66.	5.4	100
94	Why does land-use history facilitate non-native plant invasion? A field experiment with Celastrus orbiculatus in the southern Appalachians. Biological Invasions, 2013, 15, 613-626.	2.4	14
95	Managing Forests and Fire in Changing Climates. Science, 2013, 342, 41-42.	12.6	378
96	Bark beetle effects on fuel profiles across a range of stand structures in Douglasâ€fir forests of Greater Yellowstone. Ecological Applications, 2013, 23, 3-20.	3.8	73
97	Monitoring forest regrowth following large scale fire using satellite data-A case study of Yellowstone National Park, USA European Journal of Remote Sensing, 2013, 46, 551-569.	3.5	46
98	Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Oecologia, 2012, 170, 551-565.	2.0	29
99	Seeing the forest and the trees: multilevel models reveal both species and community patterns. Ecosphere, 2012, 3, 1-16.	2.2	49
100	Effects of Climate and Exurban Development on Nest Predation and Predator Presence in the southern Appalachian Mountains (U.S.A.). Conservation Biology, 2012, 26, 679-688.	4.7	14
101	What explains landscape patterns of tree mortality caused by bark beetle outbreaks in Greater Yellowstone?. Global Ecology and Biogeography, 2012, 21, 556-567.	5.8	69
102	Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance. PLoS ONE, 2012, 7, e50597.	2.5	27
103	Agricultural land-use history increases non-native plant invasion in a southern Appalachian forest a century after abandonment. Canadian Journal of Forest Research, 2011, 41, 920-929.	1.7	49
104	Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Forest Ecology and Management, 2011, 261, 1077-1089.	3.2	100
105	Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology, 2011, 17, 1193-1211.	9.5	151
106	Variation in Aboveground Cover Influences Soil Nitrogen Availability at Fine Spatial Scales Following Severe Fire in Subalpine Conifer Forests. Ecosystems, 2011, 14, 1081-1095.	3.4	25
107	Twenty Years After the 1988 Yellowstone Fires: Lessons About Disturbance and Ecosystems. Ecosystems, 2011, 14, 1196-1215.	3.4	126
108	Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13165-13170.	7.1	536

#	Article	IF	CITATIONS
109	Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests?. Ecological Monographs, 2011, 81, 3-24.	5.4	237
110	Effects of land-use history and the contemporary landscape on non-native plant invasion at local and regional scales in the forest-dominated southern Appalachians. Landscape Ecology, 2010, 25, 1433-1445.	4.2	72
111	Disturbance and landscape dynamics in a changing world. Ecology, 2010, 91, 2833-2849.	3.2	1,060
112	Filling holes in regional carbon budgets: Predicting peat depth in a north temperate lake district. Journal of Geophysical Research, 2010, 115, .	3.3	33
113	Variation in foliar nitrogen and aboveground net primary production in young postfire lodgepole pine. Canadian Journal of Forest Research, 2009, 39, 1024-1035.	1.7	24
114	Long-Term Nitrogen Storage and Soil Nitrogen Availability in Post-Fire Lodgepole Pine Ecosystems. Ecosystems, 2009, 12, 792-806.	3.4	48
115	Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landscape Ecology, 2009, 24, 863-877.	4.2	40
116	Diversity in Current Ecological Thinking: Implications for Environmental Management. Environmental Management, 2009, 43, 17-27.	2.7	74
117	Effect of flood regime on tree growth in the floodplain and surrounding uplands of the Wisconsin River. River Research and Applications, 2009, 25, 283-296.	1.7	19
118	Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (<i>Pinus contorta</i>) stands. Global Change Biology, 2009, 15, 535-548.	9.5	61
119	The spatial legacy of introduction: <i>Celastrus orbiculatus</i> in the southern Appalachians, USA. Journal of Applied Ecology, 2009, 46, 1229-1238.	4.0	17
120	The demography of coarse wood in north temperate lakes. Freshwater Biology, 2009, 54, 1110-1119.	2.4	11
121	Does inorganic nitrogen limit plant growth 3–5 years after fire in a Wyoming, USA, lodgepole pine forest?. Forest Ecology and Management, 2009, 257, 829-835.	3.2	21
122	The response of understory herbaceous plants to nitrogen fertilization in forests of different land-use history. Forest Ecology and Management, 2009, 257, 2182-2188.	3.2	24
123	Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. Journal of the North American Benthological Society, 2009, 28, 44-56.	3.1	122
124	Climate change and lakes: Estimating sensitivities of water and carbon budgets. Journal of Geophysical Research, 2009, 114, .	3.3	16
125	Landscape configuration and flood frequency influence invasive shrubs in floodplain forests of the Wisconsin River (USA). Journal of Ecology, 2008, 96, 91-102.	4.0	46
126	Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience, 2008, 58, 501-517.	4.9	1,410

#	Article	IF	CITATIONS
127	Influence of coarse wood and pine saplings on nitrogen mineralization and microbial communities in young post-fire Pinus contorta. Forest Ecology and Management, 2008, 256, 59-67.	3.2	18
128	Another Perspective On Yellowstone's Northern Range. BioScience, 2008, 58, 173-175.	4.9	1
129	When to Slow Down: Elk Residency Rates on a Heterogeneous Landscape. Journal of Mammalogy, 2008, 89, 105-114.	1.3	17
130	Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA. International Journal of Wildland Fire, 2008, 17, 742.	2.4	83
131	Landscape and Local Factors Affecting Northern White Cedar (Thuja Occidentalis) Recruitment in The Chequamegon-Nicolet National Forest, Wisconsin (U.S.A.). American Midland Naturalist, 2008, 160, 438-453.	0.4	13
132	STATE–SPACE MODELS LINK ELK MOVEMENT PATTERNS TO LANDSCAPE CHARACTERISTICS IN YELLOWSTONE NATIONAL PARK. Ecological Monographs, 2007, 77, 285-299.	5.4	148
133	Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 2007, 5, 145-152.	4.0	401
134	Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4782-4789.	7.1	134
135	Cone production in young post-fire Pinus contorta stands in Greater Yellowstone (USA). Forest Ecology and Management, 2007, 242, 119-126.	3.2	34
136	Do high-density patches of coarse wood and regenerating saplings create browsing refugia for aspen (Populus tremuloides Michx.) in Yellowstone National Park (USA)?. Forest Ecology and Management, 2007, 253, 211-219.	3.2	21
137	Identifying and Quantifying Landscape Patterns in Space and Time. Landscape Series, 2007, , 177-194.	0.2	15
138	Understanding Regional Change: A Comparison of Two Lake Districts. BioScience, 2007, 57, 323-335.	4.9	129
139	Carbon and water cycling in lake-rich landscapes: Landscape connections, lake hydrology, and biogeochemistry. Journal of Geophysical Research, 2007, 112, .	3.3	42
140	Linking terrestrial and aquatic ecosystems: The role of woody habitat in lake food webs. Ecological Modelling, 2007, 203, 439-452.	2.5	62
141	In memoriam—Frank B. Golley (1930–2006). Landscape Ecology, 2007, 22, 1-3.	4.2	2
142	A Decade of Ecosystems. Ecosystems, 2007, 10, 519-522.	3.4	6
143	Cross–Scale Interactions and Changing Pattern–Process Relationships: Consequences for System Dynamics. Ecosystems, 2007, 10, 790-796.	3.4	205
144	MICROBIAL COMMUNITY VARIATION AND ITS RELATIONSHIP WITH NITROGEN MINERALIZATION IN HISTORICALLY ALTERED FORESTS. Ecology, 2006, 87, 570-579.	3.2	127

MONICA G TURNER

#	Article	IF	CITATIONS
145	Foliar nitrogen patterns following stand-replacing fire in lodgepole pine (Pinus contorta var.) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 T
146	Fish Community and Food Web Responses to a Whole-lake Removal of Coarse Woody Habitat. Fisheries, 2006, 31, 321-330.	0.8	120
147	Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications, 2006, 22, 1057-1083.	1.7	75
148	Previous land use alters plant allocation and growth in forest herbs. Journal of Ecology, 2006, 94, 548-557.	4.0	42
149	Natural and anthropogenic variation in coarse wood among and within lakes. Journal of Ecology, 2006, 94, 558-568.	4.0	80
150	Interactions between past land use, life-history traits and understory spatial heterogeneity. Landscape Ecology, 2006, 21, 777-790.	4.2	46
151	Influence of fire regimes on lodgepole pine stand age and density across the Yellowstone National Park (USA) landscape. Landscape Ecology, 2006, 21, 1281-1296.	4.2	15
152	Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application?. Ecosystems, 2006, 9, 1-13.	3.4	829
153	Carbon Storage on Landscapes with Stand-replacing Fires. BioScience, 2006, 56, 598.	4.9	206
154	Amount, position, and age of coarse wood influence litter decomposition in postfirePinus contortastands. Canadian Journal of Forest Research, 2006, 36, 2112-2123.	1.7	38
155	ESTABLISHMENT, PERSISTENCE, AND GROWTH OF ASPEN (POPULUS TREMULOIDES) SEEDLINGS IN YELLOWSTONE NATIONAL PARK. Ecology, 2005, 86, 404-418.	3.2	88
156	METALAND: Characterizing Spatial Patterns and Statistical Context of Landscape Metrics. BioScience, 2005, 55, 983.	4.9	35
157	VARIABILITY AND CONVERGENCE IN STAND STRUCTURAL DEVELOPMENT ON A FIRE-DOMINATED SUBALPINE LANDSCAPE. Ecology, 2005, 86, 643-654.	3.2	110
158	Ecosystem Function in Heterogeneous Landscapes. , 2005, , 1-4.		34
159	Landscape Ecology: What Is the State of the Science?. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 319-344.	8.3	701
160	LANDSCAPE ECOLOGY IN NORTH AMERICA: PAST, PRESENT, AND FUTURE. Ecology, 2005, 86, 1967-1974.	3.2	184
161	Variation in NH4+ mineralization and microbial communities with stand age in lodgepole pine (Pinus) Tj ETQq1 1 C	0.784314 8.8	rgBT /Over
162	Variability in Leaf Area and Stemwood Increment Along a 300-year Lodgepole Pine Chronosequence. Ecosystems, 2005, 8, 48-61.	3.4	47

MONICA G TURNER

#	Article	IF	CITATIONS
163	Postfire Soil N Cycling in Northern Conifer Forests Affected by Severe, Stand-Replacing Wildfires. Ecosystems, 2005, 8, 163-181.	3.4	165
164	Surrogates for Resilience of Social–Ecological Systems. Ecosystems, 2005, 8, 941-944.	3.4	281
165	Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landscape Ecology, 2005, 20, 257-271.	4.2	125
166	Spatial Heterogeneity and Soil Nitrogen Dynamics in a Burned Black Spruce Forest Stand: Distinct Controls at Different Scales. Biogeochemistry, 2005, 76, 517-537.	3.5	46
167	SCALE-DEPENDENT SUMMER RESOURCE SELECTION BY REINTRODUCED ELK IN WISCONSIN, USA. Journal of Wildlife Management, 2005, 69, 298-310.	1.8	101
168	Causes and Consequences of Spatial Heterogeneity in Ecosystem Function. , 2005, , 9-30.		38
169	EFFECTS OF PAST LAND USE ON SPATIAL HETEROGENEITY OF SOIL NUTRIENTS IN SOUTHERN APPALACHIAN FORESTS. Ecological Monographs, 2005, 75, 215-230.	5.4	197
170	Ecological science and sustainability for the 21st century. Frontiers in Ecology and the Environment, 2005, 3, 4-11.	4.0	127
171	Ecological Science and Sustainability for the 21st Century. Frontiers in Ecology and the Environment, 2005, 3, 4.	4.0	1
172	Previous land use alters plant allocation and growth in forest herbs. Journal of Ecology, 2005, .	4.0	0
173	RESPONSE OF AVIAN COMMUNITIES IN LARGE-RIVER FLOODPLAINS TO ENVIRONMENTAL VARIATION AT MULTIPLE SCALES. , 2004, 14, 1394-1410.		49
174	Distribution and abundance of trees in floodplain forests of the Wisconsin River: Environmental influences at different scales. Journal of Vegetation Science, 2004, 15, 729-738.	2.2	65
175	ECOLOGY: Ecology for a Crowded Planet. Science, 2004, 304, 1251-1252.	12.6	440
176	Landscape Patterns of Sapling Density, Leaf Area, and Aboveground Net Primary Production in Postfire Lodgepole Pine Forests, Yellowstone National Park (USA). Ecosystems, 2004, 7, 751-775.	3.4	140
177	Spatial heterogeneity of lodgepole pine sapling densities following the 1988 fires in Yellowstone National Park, Wyoming, USA. Canadian Journal of Forest Research, 2004, 34, 2263-2276.	1.7	51
178	Spatial Extrapolation: The Science of Predicting Ecological Patterns and Processes. BioScience, 2004, 54, 310.	4.9	163
179	The effect of fire interval on post-fire understorey communities in Yellowstone National Park. Journal of Vegetation Science, 2004, 15, 797.	2.2	14

180 Ten Years After the 1988 Yellowstone Fires: Is Restoration Needed?., 2004, , 318-361.

9

#	Article	IF	CITATIONS
181	Distribution and abundance of trees in floodplain forests of the Wisconsin River: Environmental influences at different scales. Journal of Vegetation Science, 2004, 15, 729.	2.2	27
182	Post-fire aspen seedling recruitment across the Yellowstone (USA) Landscape. Landscape Ecology, 2003, 18, 127-140.	4.2	97
183	Title is missing!. Landscape Ecology, 2003, 18, 449-464.	4.2	112
184	Disturbance Dynamics and Ecological Response: The Contribution of Long-Term Ecological Research. BioScience, 2003, 53, 46.	4.9	143
185	Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and the Environment, 2003, 1, 351-358.	4.0	284
186	ANALYSIS AND CONSERVATION IMPLICATIONS OF LANDSCAPE CHANGE IN THE WISCONSIN RIVER FLOODPLAIN, USA. , 2003, 13, 416-431.		38
187	THE INFLUENCE OF FIRE INTERVAL AND SEROTINY ON POSTFIRE LODGEPOLE PINE DENSITY IN YELLOWSTONE NATIONAL PARK. Ecology, 2003, 84, 2967-2978.	3.2	124
188	Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience, 2003, 10, 421-431.	1.4	295
189	Landscape Disturbance. , 2002, , 147-165.		6
190	Understanding Landscape Metrics I. , 2002, , 85-100.		9
191	CONSEQUENCES OF HUMAN-ALTERED FLOODS: LEVEES, FLOODS, AND FLOODPLAIN FORESTS ALONG THE WISCONSIN RIVER. , 2002, 12, 1755-1770.		115
192	RIPARIAN TREE SEEDLING DISTRIBUTION ON WISCONSIN RIVER SANDBARS: CONTROLS AT DIFFERENT SPATIAL SCALES. Ecological Monographs, 2002, 72, 465-485.	5.4	81
193	EFFECTS OF HISTORICAL LAND USE AND FOREST PATCH SIZE ON MYRMECOCHORES AND ANT COMMUNITIES. , 2002, 12, 1364-1377.		70
194	Landscape indicators of human impacts to riverine systems. , 2002, 64, 118-128.		325
195	The Effect of Military Training Activity on Eastern Lupine and the Karner Blue Butterfly at Fort McCoy, Wisconsin, USA. Environmental Management, 2002, 29, 102-115.	2.7	29
196	Explaining Human Settlement Patterns in a Recreational Lake District: Vilas County, Wisconsin, USA. Environmental Management, 2002, 30, 24-34.	2.7	87
197	Factors and Processes Shaping Land Cover and Land Cover Changes Along the Wisconsin River. Ecosystems, 2002, 5, 184-201.	3.4	89
198	Riparian Tree Seedling Distribution on Wisconsin River Sandbars: Controls at Different Spatial Scales. Ecological Monographs, 2002, 72, 465.	5.4	3

#	Article	IF	CITATIONS
199	Nature, society and history in two contrasting landscapes in Wisconsin, USA. Land Use Policy, 2001, 18, 41-51.	5.6	27
200	More Issues, More Impact, and More Opportunity. Ecosystems, 2001, 4, 1-2.	3.4	0
201	ENVIRONMENTAL AND SOCIAL FACTORS INFLUENCING WILDFIRES IN THE UPPER MIDWEST, UNITED STATES. , 2001, 11, 111-127.		235
202	Secondary Plant Compounds in Seedling and Mature Aspen (Populus tremuloides) in Yellowstone National Park, Wyoming. American Midland Naturalist, 2001, 145, 299-308.	0.4	30
203	Ecological Guidelines for Land Use and Management. , 2001, , 3-33.		4
204	A FUTURE PERSPECTIVE ON NORTH AMERICA'S FRESHWATER ECOSYSTEMS. , 2000, 10, 958-970.		141
205	Opening the Black Boxes: Ecosystem Science and Economic Valuation. Ecosystems, 2000, 3, 1-3.	3.4	23
206	Hares and Tortoises: Interactions of Fast and Slow Variablesin Ecosystems. Ecosystems, 2000, 3, 495-497.	3.4	136
207	Simulating fire patterns in heterogeneous landscapes. Ecological Modelling, 2000, 135, 243-263.	2.5	220
208	Genetic variation in postfire aspen seedlings in Yellowstone National Park. Molecular Ecology, 1999, 8, 1769-1780.	3.9	23
209	Tips and Traps in Interdisciplinary Research. Ecosystems, 1999, 2, 275-276.	3.4	36
210	Editorial: How Are We Doing? Reflections on the First Year of Ecosystems. Ecosystems, 1999, 2, 1-3.	3.4	8
211	Aboveground Net Primary Production and Leaf-Area Index in Early Postfire Vegetation in Yellowstone National Park. Ecosystems, 1999, 2, 88-94.	3.4	25
212	Introduction to Special Feature. Ecosystems, 1999, 2, 383-383.	3.4	10
213	DISSOLVED ORGANIC CARBON AS AN INDICATOR OF THE SCALE OF WATERSHED INFLUENCE ON LAKES AND RIVERS. , 1999, 9, 1377-1390.		241
214	Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. International Journal of Wildland Fire, 1999, 9, 21.	2.4	271
215	LANDSCAPE CHANGE AND HABITAT AVAILABILITY IN THE SOUTHERN APPALACHIAN HIGHLANDS AND OLYMPIC PENINSULA. , 1999, 9, 1288-1304.		58
216	Dynamic forest mosaics. , 1999, , 95-160.		87

#	Article	IF	CITATIONS
217	Dissolved Organic Carbon as an Indicator of the Scale of Watershed Influence on Lakes and Rivers. , 1999, 9, 1377.		3
218	Scale detection in real and artificial landscapes using semivariance analysis. Landscape Ecology, 1998, 13, 347-362.	4.2	88
219	Editorial: At Last: A Journal Devoted to Ecosystem Science. Ecosystems, 1998, 1, 1-5.	3.4	34
220	Local Explanations of Landscape Patterns: Can Analytical Approaches Approximate Simulation Models of Spatial Processes?. Ecosystems, 1998, 1, 35-51.	3.4	35
221	Large, Infrequent Disturbances: Comparing Large, Infrequent Disturbances: What Have We Learned?. Ecosystems, 1998, 1, 493-496.	3.4	222
222	Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems, 1998, 1, 511-523.	3.4	614
223	LAND COVER ALONG AN URBAN–RURAL GRADIENT: IMPLICATIONS FOR WATER QUALITY. , 1998, 8, 619-630.		35
224	Land Cover Along an Urban-Rural Gradient: Implications for Water Quality. , 1998, 8, 619.		5
225	Watershed Management. , 1998, , 642-661.		4
226	Landscape Connectivity and Population Distributions in Heterogeneous Environments. Oikos, 1997, 78, 151.	2.7	441
227	Fires, Hurricanes, and Volcanoes: Comparing Large Disturbances. BioScience, 1997, 47, 758-768.	4.9	169
228	EFFECTS OF FIRE SIZE AND PATTERN ON EARLY SUCCESSION IN YELLOWSTONE NATIONAL PARK. Ecological Monographs, 1997, 67, 411-433.	5.4	429
229	Landscape Heterogeneity and Ungulate Dynamics: What Spatial Scales are Important?. , 1997, , 331-348.		20
230	Effects of Fire Size and Pattern on Early Succession in Yellowstone National Park. Ecological Monographs, 1997, 67, 411.	5.4	14
231	The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management. , 1996, 6, 665-691.		1,080
232	RAPD markers reveal diversity within and among clonal and seedling stands of aspen in Yellowstone National Park, U.S.A Canadian Journal of Forest Research, 1996, 26, 2088-2098.	1.7	59
233	Ecosystem Management with Multiple Owners: Landscape Dynamics in a Southern Appalachian Watershed. , 1996, 6, 1173-1188.		104
234	Land Ownership and Land-Cover Change in the Southern Appalachian Highlands and the Olympic Peninsula. , 1996, 6, 1150-1172.		253

#	Article	IF	CITATIONS
235	Winter Habitat Use by Large Ungulates Following Fire in Northern Yellowstone National Park. , 1995, 5, 744-755.		93
236	Usefulness of Spatially Explicit Population Models in Land Management. , 1995, 5, 12-16.		169
237	Scale of heterogeneity of forage production and winter foraging by elk and bison. Landscape Ecology, 1995, 10, 75-83.	4.2	76
238	Aspen, Elk, and Fire in Northern Yellowstone Park. Ecology, 1995, 76, 2097-2106.	3.2	264
239	Ecological Dynamics at Broad Scales. BioScience, 1995, 45, S29-S35.	4.9	68
240	Landscape dynamics in crown fire ecosystems. Landscape Ecology, 1994, 9, 59-77.	4.2	482
241	Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science, 1994, 5, 731-742.	2.2	453
242	Landscape-scale heterogeneity in lodgepole pine serotiny. Canadian Journal of Forest Research, 1994, 24, 897-903.	1.7	95
243	Simulating Winter Interactions Among Ungulates, Vegetation, and Fire in Northern Yellowstone Park. , 1994, 4, 472-496.		128
244	A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landscape Ecology, 1993, 8, 213-227.	4.2	433
245	A landscape simulation model of winter foraging by large ungulates. Ecological Modelling, 1993, 69, 163-184.	2.5	122
246	Interactions between the fractal geometry of landscapes and allometric herbivory. Theoretical Population Biology, 1992, 41, 337-353.	1.1	86
247	Epidemiology theory and disturbance spread on landscapes. Landscape Ecology, 1992, 7, 19-26.	4.2	44
248	A Percolation Model of Ecological Flows. Ecological Studies, 1992, , 259-269.	1.2	22
249	Integrating Sustainable Development and Environmental Vitality: A Landscape Ecology Approach. , 1992, , 499-521.		24
250	Implications of Global Climate Change for Biogeographic Patterns in the Greater Yellowstone Ecosystem. Conservation Biology, 1991, 5, 373-386.	4.7	145
251	Heterogeneity and Spatial Hierarchies. Ecological Studies, 1991, , 85-96.	1.2	57
252	Potential Responses of Landscape Boundaries to Global Environmental Change. , 1991, , 52-75.		14

#	Article	IF	CITATIONS
253	Simulation of the Scale-Dependent Effects of Landscape Boundaries on Species Persistence and Dispersal. , 1991, , 76-89.		32
254	Quantitative Methods in Landscape Ecology: An Introduction. Ecological Studies, 1991, , 3-14.	1.2	102
255	Modeling Landscape Disturbance. Ecological Studies, 1991, , 323-351.	1.2	32
256	Spatial and temporal analysis of landscape patterns. Landscape Ecology, 1990, 4, 21-30.	4.2	497
257	How Increasing CO2and Climate Change Affect Forests. BioScience, 1990, 40, 575-587.	4.9	96
258	The Georgia Landscape: A Changing Resource. , 1990, , 135-164.		22
259	Predicting across scales comments of the guest editors of Landscape Ecology. Landscape Ecology, 1989, 3, 147-151.	4.2	19
260	Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 1989, 3, 153-162.	4.2	819
261	Predicting across scales: Theory development and testing. Landscape Ecology, 1989, 3, 245-252.	4.2	313
262	Methods to evaluate the performance of spatial simulation models. Ecological Modelling, 1989, 48, 1-18.	2.5	139
263	Predicting the Spread of Disturbance across Heterogeneous Landscapes. Oikos, 1989, 55, 121.	2.7	278
264	Market and nonmarket values of the Georgia landscape. Environmental Management, 1988, 12, 209-217.	2.7	37
265	Spatial heterogeneity and ecosystem processes. , 0, , 62-77.		12