
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8091800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 2017, 68, 136-148.	10.7	880
2	Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 2005, 67, 95-112.	5.2	289
3	Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydrate Polymers, 2018, 195, 432-443.	10.2	131
4	Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chemistry, 2016, 196, 560-566.	8.2	130
5	Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review. Food Hydrocolloids, 2011, 25, 1842-1852.	10.7	126
6	Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Materials Chemistry and Physics, 2020, 239, 122027.	4.0	93
7	Effects of high pressure processing on protein fractions of blue crab (Callinectes sapidus) meat. Innovative Food Science and Emerging Technologies, 2017, 41, 323-329.	5.6	74
8	Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 2019, 216, 72-85.	10.2	74
9	Identification of bound water through infrared spectroscopy in methylcellulose. Journal of Food Engineering, 2003, 59, 79-84.	5.2	70
10	Evaluation of extraction methods for preparative scale obtention of mangiferin and lupeol from mango peels (Mangifera indica L.). Food Chemistry, 2014, 159, 267-272.	8.2	68
11	Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite. Carbohydrate Polymers, 2015, 127, 195-201.	10.2	67
12	Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties. International Journal of Biological Macromolecules, 2018, 117, 235-246.	7.5	66
13	Surimi wash water treatment for protein recovery: effect of chitosan?alginate complex concentration and treatment time on protein adsorption. Bioresource Technology, 2005, 96, 665-671.	9.6	63
14	Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polymer Testing, 2018, 69, 536-544.	4.8	55
15	Effect of chitosan type on protein and water recovery efficiency from surimi wash water treated with chitosan–alginate complexes. Bioresource Technology, 2007, 98, 539-545.	9.6	53
16	Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Advances in Colloid and Interface Science, 2021, 295, 102398.	14.7	46
17	Effect of high-pressure treatments on mechanical and functional properties of restructured products from arrowtooth flounder(Atheresthes stomias). Journal of the Science of Food and Agriculture, 2004, 84, 1741-1749.	3.5	45
18	Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films. Journal of Food Science and Technology, 2018, 55, 3739-3748.	2.8	45

#	Article	IF	CITATIONS
19	Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: Mechanical and barrier properties. Food Hydrocolloids, 2019, 89, 481-491.	10.7	45
20	Analysis of the water bound to a polymer matrix by infrared spectroscopy. Journal of Applied Physics, 2001, 89, 5431-5437.	2.5	42
21	Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloids, 2020, 99, 105323.	10.7	42
22	Effects of combining microbial transglutaminase and high pressure processing treatments on the mechanical properties of heat-induced gels prepared from arrowtooth flounder (Atheresthes) Tj ETQq0 0 0 rgBT	/Osee2lock	104 1 f 50 617
23	Low-salt restructured products from striped mullet (Mugil cephalus) using microbial transglutaminase or whey protein concentrate as additives. Food Chemistry, 2007, 102, 243-249.	8.2	41
24	Preparation and characterisation of zein films obtained by electrospraying. Food Hydrocolloids, 2015, 49, 1-10.	10.7	38
25	Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 2016, 152, 351-360.	10.2	38
26	Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 2017, 77, 1-8.	3.7	38
27	Temperature effect on the moisture sorption isotherms for methylcellulose and ethylcellulose films. Journal of Food Engineering, 2001, 48, 91-94.	5.2	37
28	Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. Journal of Polymers and the Environment, 2017, 25, 683-691.	5.0	37
29	Composite Films with UV-Barrier Properties Based on Bacterial Cellulose Combined with Chitosan and Poly(vinyl alcohol): Study of Puncture and Water Interaction Properties. Biomacromolecules, 2019, 20, 2084-2095.	5.4	37
30	Films made from plasma-modified corn starch: Chemical, mechanical and barrier properties. Carbohydrate Polymers, 2020, 237, 116103.	10.2	37
31	Effect of sugars and polyols on the functional and mechanical properties of pressure-treated arrowtooth flounder (Atheresthes stomias) proteins. Food Hydrocolloids, 2005, 19, 964-973.	10.7	34
32	Modelling the effect of temperature on the water sorption isotherms of chitosan films. Food Science and Technology, 2017, 37, 112-118.	1.7	32
33	Hexamethyldisiloxane cold plasma treatment and amylose content determine the structural, barrier and mechanical properties of starch-based films. International Journal of Biological Macromolecules, 2019, 124, 651-658.	7.5	32
34	Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydrate Polymers, 2020, 236, 116031.	10.2	32
35	HMDSO plasma treatment as alternative to modify structural properties of granular starch. International Journal of Biological Macromolecules, 2020, 144, 682-689.	7.5	30
36	Compositional and Moisture Content Effects on the Biodegradability of Zein/Ethylcellulose Films. Journal of Agricultural and Food Chemistry, 2004, 52, 2230-2235.	5.2	29

#	Article	IF	CITATIONS
37	Effects of adding fish gelatin on Alaska pollock surimi gels. Food Hydrocolloids, 2009, 23, 2446-2449.	10.7	29
38	Inclusion of the variability of model parameters on shelf-life estimations for low and intermediate moisture vegetables. LWT - Food Science and Technology, 2012, 47, 364-370.	5.2	29
39	Effect of Dual Modification on the Spectroscopic, Calorimetric, Viscosimetric and Morphological Characteristics of Corn Starch. Polymers, 2019, 11, 333.	4.5	29
40	The effect of relative humidity on tensile strength and water vapor permeability in chitosan, fish gelatin and transglutaminase edible films. Food Science and Technology, 2015, 35, 690-695.	1.7	28
41	Environmentally Friendly Films Combining Bacterial Cellulose, Chitosan, and Polyvinyl Alcohol: Effect of Water Activity on Barrier, Mechanical, and Optical Properties. Biomacromolecules, 2020, 21, 753-760.	5.4	27
42	Bacterial cellulose films: Evaluation of the water interaction. Food Packaging and Shelf Life, 2020, 25, 100526.	7.5	27
43	Composite Films with UV-Barrier Properties of Bacterial Cellulose with Glycerol and Poly(vinyl) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10 26
44	Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content. Innovative Food Science and Emerging Technologies, 2021, 68, 102630.	5.6	26
45	Rheological properties of nanocomposite-forming solutions and film based on montmorillonite and corn starch with different amylose content. Carbohydrate Polymers, 2018, 188, 121-127.	10.2	25
46	Effect of granular disorganization and the water content on the rheological properties of amaranth and achira starch blends. LWT - Food Science and Technology, 2018, 87, 280-286.	5.2	25
47	Regenerated cellulose films combined with glycerol and polyvinyl alcohol: Effect of moisture content on the physical properties. Food Hydrocolloids, 2020, 103, 105657.	10.7	25
48	Rheological performance of film-forming solutions made from plasma-modified starches with different amylose/amylopectin content. Carbohydrate Polymers, 2021, 255, 117349.	10.2	25
49	Measurement of the Water Vapor Permeability of Chitosan Films: A Laboratory Experiment on Food Packaging Materials. Journal of Chemical Education, 2022, 99, 2403-2408.	2.3	24
50	Production of low-salt restructured fish products from Mexican flounder (Cyclopsetta chittendeni) using microbial transglutaminase or whey protein concentrate as binders. European Food Research and Technology, 2006, 223, 341-345.	3.3	23
51	Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. Journal of Food Engineering, 2011, 102, 247-256.	5.2	23
52	Thermal study in the interactions of starches blends: Amaranth and achira. Food Hydrocolloids, 2016, 61, 640-648.	10.7	23
53	Effect of precooking temperature and microbial transglutaminase on the gelling properties of blue crab (Callinectes sapidus) proteins. Food Hydrocolloids, 2014, 35, 264-269.	10.7	21
54	Effect of high pressure processing on heat-induced gelling capacity of blue crab (Callinectes sapidus) meat. Innovative Food Science and Emerging Technologies, 2020, 59, 102253.	5.6	20

GONZALO VELAZQUEZ

#	Article	IF	CITATIONS
55	Retrogradation of autoclaved corn starches: Effect of water content on the resistant starch formation and structure. Carbohydrate Research, 2020, 497, 108137.	2.3	20
56	Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins. LWT - Food Science and Technology, 2021, 146, 111389.	5.2	20
57	Supramolecular structure and technofunctional properties of starch modified by high hydrostatic pressure (HHP): A review. Carbohydrate Polymers, 2022, 291, 119609.	10.2	20
58	Moderately High Hydrostatic Pressure Processing to Reduce Production Costs of Shredded Cheese: Microstructure, Texture, and Sensory Properties of Shredded Milled Curd Cheddar. Journal of Food Science, 2005, 70, S286-S293.	3.1	19
59	Nutrition Provided to Mexican-American Preschool Children on the Texas–Mexico Border. Journal of the American Dietetic Association, 2007, 107, 311-315.	1.1	18
60	EFFECT OF SETTING CONDITIONS USING MICROBIAL TRANSGLUTAMINASE DURING OBTENTION OF BEEF GELS. Journal of Food Process Engineering, 2009, 32, 221-234.	2.9	18
61	Effect of high hydrostatic pressure on antioxidant content of 'Ataulfo' mango during postharvest maturation. Food Science and Technology, 2013, 33, 561-568.	1.7	18
62	Effects of Tempering Time, Ca(OH) ₂ Concentration, and Particle Size on the Rheological Properties of Extruded Corn Flour. Cereal Chemistry, 2017, 94, 230-236.	2.2	18
63	Fiber-rich functional fish food from striped mullet (Mugil cephalus) using amidated low methoxyl pectin. Food Hydrocolloids, 2007, 21, 527-536.	10.7	17
64	Mechanical and functional properties of beef products obtained using microbial transglutaminase with treatments of pre-heating followed by cold binding. Meat Science, 2009, 83, 229-238.	5.5	17
65	Effect of airflow presence during the manufacturing of biodegradable films from polymers with different structural conformation. Food Packaging and Shelf Life, 2018, 17, 162-170.	7.5	17
66	Influence of gelatinization process and HMDSO plasma treatment on the chemical changes and water vapor permeability of corn starch films. International Journal of Biological Macromolecules, 2019, 135, 196-202.	7.5	17
67	Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus). Food and Bioproducts Processing, 2020, 121, 178-185.	3.6	17
68	Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. Starch/Staerke, 2020, 72, 1900282.	2.1	16
69	Restructured products from arrowtooth flounder (Atheresthes stomias) using high-pressure treatments. European Food Research and Technology, 2005, 220, 113-119.	3.3	15
70	Low-salt restructured fish products using low-value fish species from the gulf of Mexico. International Journal of Food Science and Technology, 2007, 42, 1039-1045.	2.7	15
71	Gelling of amaranth and achira starch blends in excess and limited water. LWT - Food Science and Technology, 2017, 81, 265-273.	5.2	15
72	Hygroscopic properties and glass transition of dehydrated mango, apple and banana. Journal of Food Science and Technology, 2018, 55, 540-549.	2.8	15

#	Article	IF	CITATIONS
73	UV-protecting films based on bacterial cellulose, glycerol and polyvinyl alcohol: effect of water activity on barrier, mechanical and optical properties. Cellulose, 2020, 27, 8199-8213.	4.9	15
74	Development of Antimicrobial Biodegradable Films Based on Corn Starch with Aqueous Extract of <i>Hibiscus sabdariffa</i> L. Starch/Staerke, 2021, 73, .	2.1	15
75	Effect of adding insoluble solids from surimi wash water on the functional and mechanical properties of pacific whiting grade A surimi. Bioresource Technology, 2007, 98, 2148-2153.	9.6	14
76	Extruded snacks from whole wheat supplemented with textured soy flour: Effect on instrumental and sensory textural characteristics. Journal of Texture Studies, 2017, 48, 249-257.	2.5	13
77	Efficacy of high hydrostatic pressure as a quarantine treatment to improve the quality of mango fruits infested by the Mexican fruit flyAnastrepha ludens. CYTA - Journal of Food, 2009, 7, 135-142.	1.9	12
78	An Improved Quarantine Method for Mangoes Against the Mexican Fruit Fly Based on High-Pressure Processing Combined with Heat. Foodborne Pathogens and Disease, 2010, 7, 493-498.	1.8	12
79	Effect of dual chemical modification on the properties of biodegradable films from achira starch. Journal of Applied Polymer Science, 2020, 137, 49411.	2.6	12
80	Effect of Crystalline and Double Helical Structures on the Resistant Fraction of Autoclaved Corn Starch with Different Amylose Content. Starch/Staerke, 2020, 72, 1900306.	2.1	12
81	A Feeding Study to Assess Nutritional Quality and Safety of Surimi Wash Water Proteins Recovered by a Chitosan-Alginate Complex. Journal of Food Science, 2007, 72, S179-S184.	3.1	11
82	Effect of Input Data Variability on Estimations of the Equivalent Constant Temperature Time for Microbial Inactivation by HTST and Retort Thermal Processing. Journal of Food Science, 2011, 76, E495-502.	3.1	11
83	Double helical order and functional properties of acid-hydrolyzed maize starches with different amylose content. Carbohydrate Research, 2020, 490, 107956.	2.3	11
84	High Hydrostatic Pressure at Low Temperature as a Quarantine Treatment to Improve the Quality of Fruits. Foodborne Pathogens and Disease, 2010, 7, 287-292.	1.8	10
85	Effect of high pressure processing on postharvest physiology of â€~Keitt' mango. Postharvest Biology and Technology, 2014, 94, 35-40.	6.0	9
86	Modeling the limited degree of starch gelatinization. Starch/Staerke, 2016, 68, 727-733.	2.1	9
87	Structural properties of waxy corn and potato starch blends in excess water. International Journal of Food Properties, 2017, 20, S353-S365.	3.0	9
88	Effect of the Cooking Process on the Gelling Properties of Whole and Minced Jumbo Lump of Blue Crab (<i>Callinectes sapidus</i>). Journal of Aquatic Food Product Technology, 2018, 27, 418-429.	1.4	9
89	Residential Refrigerator Performance Based on Microbial Indicators of Ground Beef Preservation Assessed Using Predictive Microbiology Tools. Food and Bioprocess Technology, 2020, 13, 2172-2185.	4.7	9
90	Dual modification of achira (Canna indica L) starch and the effect on its physicochemical properties for possible food applications. Journal of Food Science and Technology, 2021, 58, 952-961.	2.8	9

GONZALO VELAZQUEZ

#	Article	IF	CITATIONS
91	UV-Shielding films of bacterial cellulose with glycerol and chitosan. Part 1: equilibrium moisture content and mechanical properties. CYTA - Journal of Food, 2021, 19, 105-114.	1.9	9
92	Steady- and Unsteady-State Determination of the Water Vapor Permeance (WVP) of Polyethylene Film to Estimate the Moisture Gain of Packed Dry Mango. Food and Bioprocess Technology, 2017, 10, 1792-1797.	4.7	8
93	Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. LWT - Food Science and Technology, 2022, 153, 112509.	5.2	8
94	Influence of high pressure processing and alkaline treatment on sugarcane bagasse hydrolysis. CYTA - Journal of Food, 0, , 1-8.	1.9	7
95	Physicochemical characteristics of stored gels from starch blends. LWT - Food Science and Technology, 2019, 114, 108408.	5.2	7
96	UV-Shielding films of bacterial cellulose with glycerol and chitosan. Part 2: Structure, water vapor permeability, spectral and thermal properties. CYTA - Journal of Food, 2021, 19, 115-126.	1.9	7
97	Theoretical determination of first adsorbed layer of water in methylcellulose. Journal of Food Engineering, 2003, 59, 45-50.	5.2	6
98	EFFECT OF PACIFIC WHITING WASH WATER PROTEINS ON ALASKA POLLACK SURIMI GELS. Journal of Texture Studies, 2008, 39, 296-308.	2.5	6
99	Resistance of Mexican Fruit Fly to Quarantine Treatments of High Hydrostatic Pressure Combined with Heat. Foodborne Pathogens and Disease, 2010, 7, 959-966.	1.8	6
100	Estimation of Safety and Quality Losses of Foods Stored in Residential Refrigerators. Food Engineering Reviews, 2019, 11, 184-199.	5.9	6
101	Deterministic and probabilistic predictive microbiology-based indicator of the listeriosis and microbial spoilage risk of pasteurized milk stored in residential refrigerators. LWT - Food Science and Technology, 2020, 117, 108650.	5.2	6
102	Extraction of starch from Hass avocado seeds for the preparation of biofilms. Food Science and Technology, 0, 42, .	1.7	6
103	Relationship Between Electrical Conductivity and Water Activity of Starch-Water Composites. Food Engineering Series, 2015, , 527-531.	0.7	6
104	Resistance of Mexican Fruit Fly to Quarantine Treatments of High-Pressure Processing Combined with Cold. Foodborne Pathogens and Disease, 2011, 8, 815-823.	1.8	5
105	Estudio de los hábitos alimentarios de niños de 4-6 años de Reynosa, Tamaulipas (México). CYTA - Journal of Food, 2012, 10, 5-11.	1.9	5
106	Thermal inactivation kinetics of partially purified mango pectin methylesterase. Food Science and Technology, 2016, 36, 282-285.	1.7	5
107	Reaction Chemistry at High Pressure and High Temperature. Food Engineering Series, 2016, , 461-478.	0.7	5
108	EFFECTS OF AMIDATED LOW METHOXYL PECTIN ON HEALTHY RESTRUCTURED FISH FOOD FROM MEXICAN FLOUNDER (<i>CYCLOPSETTA CHITTENDENI</i>). Journal of Food Process Engineering, 2008, 31, 229-246.	2.9	4

GONZALO VELAZQUEZ

#	Article	IF	CITATIONS
109	Effect of washing treatment and microbial transglutaminase on the gelling properties of blue crab (Callinectes sapidus) proteins. CYTA - Journal of Food, 2017, 15, 165-170.	1.9	4
110	Digestibility and Acceptability of Wheat Flour Cookies Partially Substituted with High Amylose Maize Starch. Plant Foods for Human Nutrition, 2019, 74, 446-447.	3.2	4
111	Water Adsorption Thermodynamical Analysis and Mechanical Characterization of Chitosan and Polyvinyl Alcohol-Based Films. Journal of Polymers and the Environment, 2022, 30, 1880.	5.0	4
112	Resistance of West Indian Fruit Fly Anastrepha obliqua Macquart to Quarantine Treatments of Thermal-Controlled High-Pressure Processing. Food and Bioprocess Technology, 2012, 5, 2540-2547.	4.7	3
113	Use of a COAX-DBD Plasma Fluidized-Bed Reactor for Surface Modification of TiO2 and Potato-Starch Powders. IEEE Transactions on Plasma Science, 2018, 46, 2425-2434.	1.3	3
114	Pressure Effects on the Rate of Chemical Reactions Under the High Pressure and High Temperature Conditions Used in Pressure-Assisted Thermal Processing. , 2015, , 937-964.		3
115	Efecto de la transglutaminasa microbiana sobre las propiedades mecánicas de geles de carne de jaiba cocida. CienciaUAT, 2015, 10, 93.	0.3	3
116	Thermal, rheological, and structural characteristics of banana starches isolated using ethanol. Starch/Staerke, 2017, 69, 1600360.	2.1	2
117	Pressure Effects on the Rate of Chemical Reactions Under the High Pressure and High Temperature Conditions Used in Pressure-Assisted Thermal Processing. , 2015, , 1-23.		2
118	Hydrostatic Pressure Processing of Foods. Food Additives, 2008, , 173-212.	0.1	2
119	Precooling Treatments Induce Resistance of <i>Anastrepha ludens</i> Eggs to Quarantine Treatments of High-Pressure Processing Combined With Cold. Journal of Economic Entomology, 2014, 107, 606-613.	1.8	1
120	Effect of mechanical homogenization on the physicochemical properties of films made from dual modified corn starch prepared by the casting solution method. Journal of Food Processing and Preservation, 2020, 44, e14985.	2.0	1
121	Preparation and Characterization of Thermoplastics Achira (Canna indica L.) Starch by Three Succination Methods. Starch/Staerke, 0, , 2100040.	2.1	1
122	Compositional and Moisture Content Effects on the Biodegradability of Zein/Ethylcellulose Films. Journal of Agricultural and Food Chemistry, 2004, 52, 4038-4038.	5.2	0
123	Erratum to "Effect of moderate pressure treatments on microstructure, texture, and sensory properties of stirred-curd Cheddar shreds―(J. Dairy Sci. 87:3172–3182). Journal of Dairy Science, 2011, 94, 6257-6258.	3.4	0
124	Improvement of physicochemical properties of baked oatmeal (Avena sativa L.) by imbibition. Cereal Chemistry, 2020, 97, 981-990.	2.2	0
125	Improving of Gelling Capacity of Cooked Crab Meat Proteins. Frontiers in Nutrition, 2021, 8, 675362.	3.7	0
126	Evaluación del crecimiento de la jaiba Callinectes sapidus en la costa de Tamaulipas, México: comparación de tres métodos indirectos. Revista De Biologia Tropical, 2016, 64, 821.	0.4	0