Ying-ping Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8091680/publications.pdf

Version: 2024-02-01

154 papers	15,782 citations	47006 47 h-index	122 g-index
155	155	155	7587
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Alkyl side chain engineering enables high performance as-cast organic solar cells of over 17% efficiency. Fundamental Research, 2023, 3, 611-617.	3.3	10
2	Fine‶uning the Photovoltaic Performance of Organic Solar Cells by Collaborative Optimization of Structural Isomerism and Halogen Atom. Advanced Energy and Sustainability Research, 2022, 3, 2100138.	5 . 8	O
3	Optimizing side chains on different nitrogen aromatic rings achieving 17% efficiency for organic photovoltaics. Journal of Energy Chemistry, 2022, 65, 173-178.	12.9	22
4	Monolayer Nanosheets Exfoliated from Cage-Based Cationic Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 1521-1529.	4.0	6
5	<i>In situ</i> growth of phosphorus-doped boron nitride on commercial alumina as a robust catalyst for direct dehydrogenation of ethylbenzene. Catalysis Science and Technology, 2022, 12, 962-968.	4.1	3
6	Novel photoelectrochemical immunosensor for MCF-7 cell detection based on n-p organic semiconductor heterojunction. Chinese Chemical Letters, 2022, 33, 2954-2958.	9.0	11
7	Understanding the Role of Order in Yâ€Series Nonâ€Fullerene Solar Cells to Realize High Openâ€Circuit Voltages. Advanced Energy Materials, 2022, 12, .	19.5	32
8	The history and development of Y6. Organic Electronics, 2022, 102, 106436.	2.6	40
9	Manipulating molecular aggregation and crystalline behavior of Aâ€DA'Dâ€A type acceptors by side chain engineering in organic solar cells. Aggregate, 2022, 3, .	9.9	16
10	Electron-Deficient Contorted Polycyclic Aromatic Hydrocarbon via One-Pot Annulative π-Extension of Perylene Diimide. Organic Letters, 2022, 24, 2414-2419.	4.6	8
11	Highly sensitive photoelectrochemical sensing platform based on PM6:Y6 p-n heterojunction for detection of MCF-7 cells. Sensors and Actuators B: Chemical, 2022, 363, 131814.	7.8	12
12	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
13	A-DA′D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy. ACS Applied Materials & Diterfaces, 2022, 14, 18043-18052.	8.0	35
14	New wide band gap π-conjugated copolymers based on anthra[1,2-b: 4,3-b': 6,7-c''] trithiophene-8,12-dione for high performance non-fullerene polymer solar cells with an efficiency of 15.07 %. Polymer, 2022, 251, 124892.	3.8	6
15	Unraveling Urbach Tail Effects in High-Performance Organic Photovoltaics: Dynamic vs Static Disorder. ACS Energy Letters, 2022, 7, 1971-1979.	17.4	42
16	Effects of energetic disorder in bulk heterojunction organic solar cells. Energy and Environmental Science, 2022, 15, 2806-2818.	30.8	57
17	A-Ï∈-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%. Science China Chemistry, 2022, 65, 1374-1382.	8.2	53
18	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157

#	Article	IF	Citations
19	End group engineering enabling organic solar cells with high open-circuit voltage. Journal Physics D: Applied Physics, 2022, 55, 374002.	2.8	1
20	Effects of Oxygen Position in the Alkoxy Substituents on the Photovoltaic Performance of A-DAâ€2D-A Type Pentacyclic Small Molecule Acceptors. ACS Energy Letters, 2022, 7, 2373-2381.	17.4	19
21	Quantifying Quasiâ€Fermi Level Splitting and Openâ€Circuit Voltage Losses in Highly Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000649.	5.8	19
22	Ternary organic solar cells: Improved optical and morphological properties allow an enhanced efficiency. Chinese Chemical Letters, 2021, 32, 1359-1362.	9.0	6
23	Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003141.	19.5	144
24	Recent advances in stability of organic solar cells. EnergyChem, 2021, 3, 100046.	19.1	50
25	Ternary solvent-processed efficient organic solar cells based on a new A-DA′D-A acceptor derivative employing the 3rd-position branching side chains on pyrroles. Chinese Chemical Letters, 2021, 32, 229-233.	9.0	13
26	Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptors <i>via</i> vinylene π-bridges for efficient organic solar cells. Materials Advances, 2021, 2, 2132-2140.	5.4	16
27	Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. Journal of Materials Chemistry A, 2021, 9, 14752-14757.	10.3	17
28	Unveiling the crystalline packing of Y6 in thin films by thermally induced "backbone-on―orientation. Journal of Materials Chemistry A, 2021, 9, 17030-17038.	10.3	22
29	Vinylene π-bridge: A simple building block for ultra-narrow bandgap nonfullerene acceptors enable 14.2% efficiency in binary organic solar cells. Dyes and Pigments, 2021, 188, 109171.	3.7	17
30	Intrachain and Interchain Exciton–Exciton Annihilation in Donor–Acceptor Copolymers. Journal of Physical Chemistry Letters, 2021, 12, 3928-3933.	4.6	16
31	S-Shaped Double Helicene Diimides: Synthesis, Self-Assembly, and Mechanofluorochromism. Organic Letters, 2021, 23, 6183-6188.	4.6	16
32	Simultaneously Enhancing the <i>J</i> _{sc} and <i>V</i> _{oc} of Ternary Organic Solar Cells by Incorporating a Medium-Band-Gap Acceptor. ACS Applied Energy Materials, 2021, 4, 3480-3486.	5.1	19
33	Explaining the Fillâ€Factor and Photocurrent Losses of Nonfullerene Acceptorâ€Based Solar Cells by Probing the Longâ€Range Charge Carrier Diffusion and Drift Lengths. Advanced Energy Materials, 2021, 11, 2100804.	19.5	23
34	Modifying side chain of non-fullerene acceptors to obtain efficient organic solar cells with high fill factor. Chemical Physics, 2021, 546, 111172.	1.9	5
35	Correlating the Molecular Structure of Aâ€DA′Dâ€A Type Nonâ€Fullerene Acceptors to Its Heat Transfer and Charge Transport Properties in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2101627.	14.9	25
36	Over 13% Efficient Organic Solar Cells Based on Lowâ€Cost Pentacyclic Aâ€DA′Dâ€Aâ€Type Nonfullerene Acceptor. Solar Rrl, 2021, 5, 2100281.	5.8	17

#	Article	IF	Citations
37	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	39.5	235
38	An Overview of Highâ€Performance Indoor Organic Photovoltaics. ChemSusChem, 2021, 14, 3428-3448.	6.8	21
39	A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells. Journal of Central South University, 2021, 28, 1919-1931.	3.0	1
40	Compatibility between Solubility and Enhanced Crystallinity of Benzotriazole-Based Small Molecular Acceptors with Less Bulky Alkyl Chains for Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36053-36061.	8.0	23
41	Y6 and its derivatives: molecular design and physical mechanism. National Science Review, 2021, 8, nwab121.	9.5	40
42	Regulating the properties of small molecular acceptors with different end groups. Solar Energy, 2021, 223, 100-105.	6.1	2
43	Interplay between Intrachain and Interchain Excited States in Donor–Acceptor Copolymers. Journal of Physical Chemistry B, 2021, 125, 7470-7476.	2.6	10
44	Binary and Ternary Polymer Solar Cells Based on a Wide Bandgap Dâ€A Copolymer Donor and Two Nonfullerene Acceptors with Complementary Absorption Spectral. ChemSusChem, 2021, 14, 4731-4740.	6.8	3
45	Theoretical exploration of optoelectronic performance of PM6:Y6 series-based organic solar cells. Surfaces and Interfaces, 2021, 26, 101385.	3.0	15
46	Binary non-fullerene-based polymer solar cells with a 430 nm thick active layer showing 15.39% efficiency and 73.38% fill factor. Journal of Materials Chemistry A, 2021, 9, 7129-7136.	10.3	28
47	Phosphorus-doped h-boron nitride as an efficient metal-free catalyst for direct dehydrogenation of ethylbenzene. Catalysis Science and Technology, 2021, 11, 5590-5597.	4.1	7
48	Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells. ACS Energy Letters, 2021, 6, 598-608.	17.4	175
49	Bromination and increasing the molecular conjugation length of the non-fullerene small-molecule acceptor based on benzotriazole for efficient organic photovoltaics. RSC Advances, 2021, 11, 13571-13578.	3.6	3
50	Alkoxy substitution on IDT-Series and Y-Series non-fullerene acceptors yielding highly efficient organic solar cells. Journal of Materials Chemistry A, 2021, 9, 7481-7490.	10.3	42
51	Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells. ACS Central Science, 2021, 7, 1787-1797.	11.3	58
52	Tradeâ€Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6â€Sensitized Nonfullerene Ternary Organic Solar Cells. Energy Technology, 2020, 8, 1900924.	3.8	32
53	A new non-fullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells. Journal of Energy Chemistry, 2020, 42, 169-173.	12.9	36
54	Influence of PEIE interlayer on detectivity of red-light sensitive organic non-fullerene photodetectors with reverse structure. Organic Electronics, 2020, 77, 105527.	2.6	27

#	Article	IF	CITATIONS
55	Potassium-Presenting Zinc Oxide Surfaces Induce Vertical Phase Separation in Fullerene-Free Organic Photovoltaics. Nano Letters, 2020, 20, 715-721.	9.1	48
56	Synthesis and Photovoltaic Investigation of 8,10-Bis(2-octyldodecyl)-8,10-dihydro-9 <i>H</i> bisthieno[2′,3′:7,8;3″,2″:5,6] naphtho[2,3- <i>d</i> jimidazol-9-one Based Conjugated Polymers Using a Nonfullerene Acceptor. ACS Applied Energy Materials, 2020, 3, 495-505.	5.1	10
57	Enhanced efficiency in nonfullerene organic solar cells by tuning molecular order and domain characteristics. Nano Energy, 2020, 77, 105310.	16.0	25
58	Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. CheM, 2020, 6, 2147-2161.	11.7	150
59	Indole-based A–DA′D–A type acceptor-based organic solar cells achieve efficiency over 15 % with low energy loss. Sustainable Energy and Fuels, 2020, 4, 6203-6211.	4.9	8
60	A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency. Journal of Central South University, 2020, 27, 3581-3593.	3.0	7
61	Interface Modification Enabled by Atomic Layer Deposited Ultraâ€Thin Titanium Oxide for Highâ€Efficiency and Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000497.	5.8	15
62	Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells. Joule, 2020, 4, 1790-1805.	24.0	110
63	Furan-containing double tetraoxa[7]helicene and its radical cation. Chemical Communications, 2020, 56, 15181-15184.	4.1	24
64	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie - International Edition, 2020, 59, 21049-21057.	13.8	108
65	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	12.8	458
66	A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Science China Chemistry, 2020, 63, 1352-1366.	8.2	226
67	Putting Order into PM6:Y6 Solar Cells to Reduce the Langevin Recombination in 400 nm Thick Junction. Solar Rrl, 2020, 4, 2000498.	5 . 8	49
68	Optimising Non-Patterned MoO3/Ag/MoO3 Anode for High-Performance Semi-Transparent Organic Solar Cells towards Window Applications. Nanomaterials, 2020, 10, 1759.	4.1	20
69	Fluorination Enhances NIRâ€I Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie, 2020, 132, 21235-21243.	2.0	15
70	From Generation to Extraction: A Time-Resolved Investigation of Photophysical Processes in Non-fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21283-21292.	3.1	8
71	Fine-tuning the energy levels and morphology <i>via</i> fluorination and thermal annealing enable high efficiency non-fullerene organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3310-3318.	5.9	17
72	Aâ€"DA′Dâ€"A Nonfullerene Acceptor Obtained by Fine-Tuning Side Chains on Pyrroles Enables PBDB-T-Based Organic Solar Cells with over 14% Efficiency. ACS Applied Energy Materials, 2020, 3, 11981-11991.	5.1	8

#	Article	IF	CITATIONS
73	Emerging Approaches in Enhancing the Efficiency and Stability in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002746.	19.5	124
74	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	30.8	324
75	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
76	An asymmetric small molecule acceptor for organic solar cells with a short circuit current density over 24 mA cm ^{â^2} . Journal of Materials Chemistry A, 2020, 8, 15984-15991.	10.3	37
77	Efficient organic solar cells based on a new "Y-series―non-fullerene acceptor with an asymmetric electron-deficient-core. Chemical Communications, 2020, 56, 4340-4343.	4.1	51
78	Vertical Miscibility of Bulk Heterojunction Films Contributes to High Photovoltaic Performance. Advanced Materials Interfaces, 2020, 7, 2000577.	3.7	33
79	High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13077-13086.	8.0	69
80	Understanding the Effect of the Third Component PC ₇₁ BM on Nanoscale Morphology and Photovoltaic Properties of Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900540.	5.8	37
81	High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nature Photonics, 2020, 14, 300-305.	31.4	713
82	Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene Solar Cell. Advanced Materials, 2020, 32, e1906763.	21.0	258
83	Extraordinarily long diffusion length in PM6:Y6 organic solar cells. Journal of Materials Chemistry A, 2020, 8, 7854-7860.	10.3	74
84	A disorder-free conformation boosts phonon and charge transfer in an electron-deficient-core-based non-fullerene acceptor. Journal of Materials Chemistry A, 2020, 8, 8566-8574.	10.3	37
85	Diflurobenzothiadiazole core-based noncovalently fused small molecule acceptor exhibiting over 12% efficiency and high fill factor. Journal of Energy Chemistry, 2020, 51, 7-13.	12.9	21
86	High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Science China Chemistry, 2020, 63, 917-923.	8.2	24
87	Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Science China Chemistry, 2020, 63, 1159-1168.	8.2	92
88	Fine-tuning of non-fullerene acceptor gives over 14% efficiency for organic solar cells. Dyes and Pigments, 2020, 181, 108559.	3.7	7
89	Spin-coated 10.46% and blade-coated 9.52% of ternary semitransparent organic solar cells with 26.56% average visible transmittance. Solar Energy, 2020, 204, 660-666.	6.1	31
90	Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27433-27442.	8.0	38

#	Article	IF	CITATIONS
91	New Donor–Acceptor Random Terpolymers with Wide Absorption Spectra of 300–1000 nm for Photovoltaic Applications. Doklady Physical Chemistry, 2020, 495, 196-200.	0.9	1
92	Molecular Tuning of Titanium Complexes with Controllable Work Function for Efficient Organic Photovoltaics. Journal of Physical Chemistry C, 2019, 123, 20800-20807.	3.1	4
93	Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Letters, 2019, 19, 5053-5061.	9.1	47
94	A chlorinated non-fullerene acceptor for efficient polymer solar cells. Chinese Chemical Letters, 2019, 30, 2343-2346.	9.0	29
95	Quinoxaline-Based Semiconducting Polymer Dots for in Vivo NIR-II Fluorescence Imaging. Macromolecules, 2019, 52, 5735-5740.	4.8	46
96	Screening Quinoxaline-Type Donor Polymers for Roll-to-Roll Processing Compatible Organic Photovoltaics. ACS Applied Polymer Materials, 2019, 1, 2168-2176.	4.4	21
97	Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule, 2019, 3, 3020-3033.	24.0	763
98	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€Performance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	21.0	162
99	5H-dithieno[3,2-b:2′,3′-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Science Bulletin, 2019, 64, 1655-1657.	9.0	55
100	Synthesize non-fullerene acceptors of five fused-ring by modifying side chain. Solar Energy, 2019, 191, 566-573.	6.1	6
101	Realizing 8.6% Efficiency from Nonâ€Halogenated Solvent Processed Additive Free All Polymer Solar Cells with a Quinoxaline Based Polymer. Solar Rrl, 2019, 3, 1800340.	5.8	20
102	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	12.8	377
103	Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions. Materials Chemistry Frontiers, 2019, 3, 356-364.	5.9	45
104	Enabling Efficient Tandem Organic Photovoltaics with High Fill Factor via Reduced Charge Recombination. ACS Energy Letters, 2019, 4, 1535-1540.	17.4	18
105	Synthesis and photovoltaic properties of alkylthiothiophene modified benzodithiophene polymer. Chemical Physics Letters, 2019, 730, 271-276.	2.6	4
106	Fused Benzothiadiazole: A Building Block for n‶ype Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	21.0	297
107	Random D1â€"A1â€"D1â€"A2 terpolymers based on diketopyrrolopyrrole and benzothiadiazolequinoxaline (BTQx) derivatives for high-performance polymer solar cells. New Journal of Chemistry, 2019, 43, 5325-5334.	2.8	9
108	Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. Journal of Materials Chemistry A, 2019, 7, 7843-7851.	10.3	130

#	Article	IF	Citations
109	A wide-bandgap copolymer donor based on a phenanthridin-6($5 < i > H < /i >$)-one unit. Materials Chemistry Frontiers, 2019, 3, 2686-2689.	5.9	6
110	Reliability of charge carrier recombination data determined with charge extraction methods. Journal of Applied Physics, 2019, 126, .	2.5	13
111	A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency. Physical Chemistry Chemical Physics, 2019, 21, 26557-26563.	2.8	28
112	Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy and Environmental Science, 2019, 12, 3400-3411.	30.8	129
113	Semitransparent solar cells with over 12% efficiency based on a new low bandgap fluorinated small molecule acceptor. Materials Chemistry Frontiers, 2019, 3, 2483-2490.	5.9	55
114	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	10.3	107
115	Borane Incorporation in a Non-Fullerene Acceptor To Tune Steric and Electronic Properties and Improve Organic Solar Cell Performance. ACS Applied Energy Materials, 2019, 2, 1229-1240.	5.1	43
116	Efficient All-Polymer Solar Cells based on a New Polymer Acceptor Achieving 10.3% Power Conversion Efficiency. ACS Energy Letters, 2019, 4, 417-422.	17.4	196
117	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	24.0	4,052
118	Side chain engineering for the regulation of quinoxaline based D-A copolymers. Dyes and Pigments, 2019, 162, 487-493.	3.7	1
119	A Medium Bandgap D–A Copolymer Based on 4-Alkyl-3,5-difluorophenyl Substituted Quinoxaline Unit for High Performance Solar Cells. Macromolecules, 2018, 51, 2838-2846.	4.8	47
120	Fine-tuning blend morphology via alkylthio side chain engineering towards high performance non-fullerene polymer solar cells. Chemical Physics Letters, 2018, 696, 19-25.	2.6	7
121	Side-chain fluorination on the pyrido[3,4-b]pyrazine unit towards efficient photovoltaic polymers. Science China Chemistry, 2018, 61, 206-214.	8.2	13
122	Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% efficiency. Journal of Materials Chemistry A, 2018, 6, 3074-3083.	10.3	61
123	Benzyl and fluorinated benzyl side chains for perylene diimide non-fullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 2272-2276.	5.9	19
124	Synthesis and photovoltaic properties of a non-fullerene acceptor with F-phenylalkoxy as a side chain. New Journal of Chemistry, 2018, 42, 19279-19284.	2.8	4
125	Nonhalogenated Solvent-Processed All-Polymer Solar Cells over 7.4% Efficiency from Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2018, 10, 41318-41325.	8.0	30
126	Small-Molecule Electron Acceptors for Efficient Non-fullerene Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 414.	3.6	62

#	Article	IF	Citations
127	Toward a Universally Compatible Nonâ€Fullerene Acceptor: Multiâ€Gram Synthesis, Solvent Vapor Annealing Optimization, and BDTâ€Based Polymer Screening. Solar Rrl, 2018, 2, 1800143.	5.8	29
128	Synthesis of a Perylene Diimide Dimer with Pyrrolic N–H Bonds and Nâ€Functionalized Derivatives for Organic Fieldâ€Effect Transistors and Organic Solar Cells. European Journal of Organic Chemistry, 2018, 2018, 4592-4599.	2.4	34
129	Development of quinoxaline based polymers for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 1858-1879.	5.5	103
130	Asymmetric medium bandgap copolymers and narrow bandgap small-molecule acceptor with over 7% efficiency. Organic Electronics, 2017, 45, 42-48.	2.6	13
131	Naphthodifuran-based zigzag-type polycyclic arene with conjugated side chains for efficient photovoltaics. Physical Chemistry Chemical Physics, 2017, 19, 14289-14295.	2.8	7
132	Achieving over 10% efficiency in a new acceptor ITTC and its blends with hexafluoroquinoxaline based polymers. Journal of Materials Chemistry A, 2017, 5, 11286-11293.	10.3	102
133	Hexafluoroquinoxaline Based Polymer for Nonfullerene Solar Cells Reaching 9.4% Efficiency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18816-18825.	8.0	47
134	A new fluoropyrido [3,4-b] pyrazine based polymer for efficient photovoltaics. Polymer Chemistry, 2017, 8, 2227-2234.	3.9	4
135	Thieno[3,2- <i>b</i>]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31985-31992.	8.0	161
136	A New Electron Acceptor with <i>meta</i> å€Alkoxyphenyl Side Chain for Fullereneâ€Free Polymer Solar Cells with 9.3% Efficiency. Advanced Science, 2017, 4, 1700152.	11.2	40
137	New m-alkoxy-p-fluorophenyl difluoroquinoxaline based polymers in efficient fullerene solar cells with high fill factor. Organic Electronics, 2017, 50, 7-15.	2.6	18
138	An asymmetric small molecule based on thieno [2,3-f] benzofuran for efficient organic solar cells. Organic Electronics, 2016, 35, 87-94.	2.6	20
139	Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy, 2016, 30, 312-320.	16.0	94
140	Polymers from phenyl-substituted benzodithiophene and tetrafluoridequinoxaline with high open circuit voltage and high fill factor. Organic Electronics, 2016, 37, 287-293.	2.6	17
141	A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells. Chemical Communications, 2016, 52, 6881-6884.	4.1	79
142	Incorporation of Fluorine onto Different Positions of Phenyl Substituted Benzo[1,2- <i>b</i> >i-3,5- <i>b</i> i>3€²]dithiophene Unit: Influence on Photovoltaic Properties. Macromolecules, 2015, 48, 4347-4356.	4.8	50
143	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	10.3	31
144	Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b′]dithiophene-Based Small Molecules. ACS Applied Materials & amp; Interfaces, 2015, 7, 25237-25246.	8.0	36

#	Article	IF	CITATION
145	High performance polymer solar cells based on a two dimensional conjugated polymer from alkylthienyl-substituted benzodifuran and benzothiadiazole. Polymer Chemistry, 2014, 5, 5002-5008.	3.9	27
146	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	12.8	470
147	New alkoxylphenyl substituted benzo [1,2-b:4,5-b \hat{a} \in 2] dithiophene-based polymers: synthesis and application in solar cells. Journal of Materials Chemistry A, 2013, 1, 10639.	10.3	53
148	Alkyl substituted naphtho[1, 2-b: 5, 6-b′]difuran as a new building block towards efficient polymer solar cells. RSC Advances, 2013, 3, 5366.	3.6	15
149	Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000â€nm. Angewandte Chemie - International Edition, 2013, 52, 13002-13006.	13.8	261
150	A Thieno[3,4- <i>c</i>) pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 5330-5331.	13.7	747
151	Synthesis and characterization of red-emission PPV copolymers containing fluorenone unit. Central South University, 2010, 17, 269-276.	0.5	1
152	A Highâ∈Mobility Lowâ∈Bandgap Copolymer for Efficient Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2555-2561.	2.2	48
153	Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells. Organic Electronics, 2010, 11, 1053-1058.	2.6	40
154	Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Advanced Materials, 2008, 20, 2952-2958.	21.0	632