Jeremy Cheret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8091386/publications.pdf Version: 2024-02-01

IEDEMY CHEDET

#	Article	IF	CITATIONS
1	Towards developing an organotypic model for the preclinical study and manipulation of human hair matrix-dermal papilla interactions. Archives of Dermatological Research, 2022, 314, 491-497.	1.9	4
2	Sensory Reinnervation of Human Skin by Human Neural Stem Cell‒Derived Peripheral Neurons ExÂVivo. Journal of Investigative Dermatology, 2022, 142, 257-261.e5.	0.7	7
3	Transductionâ€induced overexpression of Merkel cell T antigens in human hair follicles induces formation of pathological cell clusters with Merkel cell carcinomaâ€like phenotype. Experimental Dermatology, 2022, 31, 259-260.	2.9	5
4	Peroxisome proliferator-activated receptor-γ signalling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial–mesenchymal transition. British Journal of Dermatology, 2022, 186, 129-141.	1.5	18
5	Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. Journal of Pineal Research, 2022, 72, .	7.4	24
6	Mitochondrially Localized MPZL3 Functions as a Negative Regulator of Sebaceous Gland Size and Sebocyte Proliferation. Journal of Investigative Dermatology, 2022, 142, 2524-2527.e7.	0.7	2
7	Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID Innovations, 2022, 2, 100113.	2.4	8
8	Targeting mitochondria in dermatological therapy: beyond oxidative damage and skin aging. Expert Opinion on Therapeutic Targets, 2022, 26, 233-259.	3.4	8
9	The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Frontiers in Neuroendocrinology, 2022, 66, 101008.	5.2	9
10	Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore ® , improves telogen effluviumâ€associated parameters. Journal of Cosmetic Dermatology, 2021, 20, 784-791.	1.6	14
11	Reâ€innervation of human skin by rat dorsal root ganglia permits to study interactions between sensory nerve fibres and native human dermal mast cells ex vivo. Experimental Dermatology, 2021, 30, 418-420.	2.9	3
12	A novel nondrug SFRP1 antagonist inhibits catagen development in human hair follicles <i>ex vivo</i> . British Journal of Dermatology, 2021, 184, 371-373.	1.5	8
13	The biology of human hair greying. Biological Reviews, 2021, 96, 107-128.	10.4	64
14	A Cell Membrane-Level Approach to Cicatricial Alopecia Management: Is Caveolin-1 a Viable Therapeutic Target in Frontal Fibrosing Alopecia?. Biomedicines, 2021, 9, 572.	3.2	5
15	Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. BioEssays, 2021, 43, 2100126.	2.5	6
16	Resident human dermal γÎT-cells operate as stress-sentinels: Lessons from the hair follicle. Journal of Autoimmunity, 2021, 124, 102711.	6.5	22
17	Growth Hormone and the Human Hair Follicle. International Journal of Molecular Sciences, 2021, 22, 13205.	4.1	13
18	An osteopontinâ€derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factorâ€7 production in outer root sheath keratinocytes. British Journal of Dermatology, 2020, 182, 1404-1414.	1.5	12

JEREMY CHERET

#	Article	IF	CITATIONS
19	Theophylline exerts complex antiâ€ageing and anti ytotoxicity effects in human skin <i>ex vivo</i> . International Journal of Cosmetic Science, 2020, 42, 79-88.	2.6	15
20	Schwann cells as underestimated, major players in human skin physiology and pathology. Experimental Dermatology, 2020, 29, 93-101.	2.9	19
21	Preclinical evidence that the <scp>PPAR</scp> γ modulator, <i>N</i> â€Acetylâ€ <scp>GED</scp> â€0507â€34â€ may protect human hair follicle epithelial stem cells against lichen planopilarisâ€associated damage. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e195-e197.	evo, 2.4	12
22	Fluoxetine promotes human hair follicle pigmentation <i>exÂvivo</i> : serotonin reuptake inhibition as a new antigreying strategy?. British Journal of Dermatology, 2020, 182, 1492-1494.	1.5	12
23	Pro-inflammatory Vδ1+T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. Journal of Dermatological Science, 2020, 100, 129-138.	1.9	23
24	Mitochondrial energy metabolism is negatively regulated by cannabinoid receptor 1 in intact human epidermis. Experimental Dermatology, 2020, 29, 616-622.	2.9	12
25	Nonâ€neuronal kappaâ€opioid receptor activation enhances epidermal keratinocyte proliferation, and modulates mast cell functions in human skin <i>ex vivo</i> . Journal of Dermatology, 2020, 47, 917-921.	1.2	14
26	Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS ONE, 2020, 15, e0227817.	2.5	15
27	Title is missing!. , 2020, 15, e0227817.		0
28	Title is missing!. , 2020, 15, e0227817.		0
29	Title is missing!. , 2020, 15, e0227817.		0
30	Title is missing!. , 2020, 15, e0227817.		0
31	Histogenesis of Merkel Cell Carcinoma: A Comprehensive Review. Frontiers in Oncology, 2019, 9, 451.	2.8	63
32	Image Gallery: Optical coherence tomography for intravital human hair follicle analyses exÂvivo. British Journal of Dermatology, 2019, 180, e141.	1.5	1
33	Growth Hormone Operates as a Neuroendocrine Regulator of Human Hair Growth ExÂVivo. Journal of Investigative Dermatology, 2019, 139, 1593-1596.	0.7	8
34	Transepidermal <scp>UV</scp> radiation of scalp skin <i>exÂvivo</i> induces hair follicle damage that is alleviated by the topical treatment with caffeine. International Journal of Cosmetic Science, 2019, 41, 164-182.	2.6	32
35	Peroxisome Proliferator–Activated Receptor-γâ~'Mediated Signaling Regulates Mitochondrial Energy Metabolism in Human Hair Follicle Epithelium. Journal of Investigative Dermatology, 2018, 138, 1656-1659.	0.7	13
36	Epithelial-to-Mesenchymal Stem Cell Transition in a Human Organ: Lessons from Lichen Planopilaris. Journal of Investigative Dermatology, 2018, 138, 511-519.	0.7	58

JEREMY CHERET

#	Article	IF	CITATIONS
37	Reconstructed human epidermis for in vitro studies on atopic dermatitis: A review. Journal of Dermatological Science, 2018, 89, 213-218.	1.9	27
38	Olfactory receptor OR2AT4 regulates human hair growth. Nature Communications, 2018, 9, 3624.	12.8	89
39	In vitro models to study cutaneous innervation mechanisms. , 2018, , 303-326.		1
40	Two olfactory receptors— <scp>OR</scp> 2A4/7 and <scp>OR</scp> 51B5—differentially affect epidermal proliferation and differentially. Experimental Dermatology, 2017, 26, 58-65.	2.9	67
41	Human dermal Ŵ1 + T-cells recognize "stressed―HFs and may induce alopecia areata. Journal of Dermatological Science, 2017, 86, e59.	1.9	1
42	The Thyroid Hormone Analogue KB2115 (Eprotirome) Prolongs Human Hair Growth (Anagen) ExÂVivo. Journal of Investigative Dermatology, 2016, 136, 1711-1714.	0.7	18
43	Thyroid Hormones Enhance Mitochondrial Function in Human Epidermis. Journal of Investigative Dermatology, 2016, 136, 2003-2012.	0.7	26
44	Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a reâ€innervated organotypic human skin model. Experimental Dermatology, 2014, 23, 73-75.	2.9	17
45	Influence of sensory neuropeptides on human cutaneous wound healing process. Journal of Dermatological Science, 2014, 74, 193-203.	1.9	66
46	Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair and Regeneration, 2013, 21, 772-788.	3.0	50
47	Effect of human skin explants on the neurite growth of the <scp>PC</scp> 12 cell line. Experimental Dermatology, 2013, 22, 224-225.	2.9	13
48	Characterization of neurons from adult human skinâ€derived precursors in serumâ€free medium : a PCR array and immunocytological analysis. Experimental Dermatology, 2012, 21, 195-200.	2.9	16
49	Expression of neuroserpin, a selective inhibitor of tissueâ€ŧype plasminogen activator in the human skin. Experimental Dermatology, 2012, 21, 710-711.	2.9	4