Kuo Wei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8090966/publications.pdf

Version: 2024-02-01

280 papers 16,231 citations

70 h-index

23472 111 g-index

326 all docs

326 docs citations

times ranked

326

16405 citing authors

#	Article	IF	CITATIONS
1	Formic Acid as a Hydrogen Energy Carrier. ACS Energy Letters, 2017, 2, 188-195.	8.8	596
2	Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Science Advances, 2019, 5, eaax4279.	4.7	410
3	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	6.6	371
4	CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15, 634-641.	8.2	357
5	Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2018, 140, 14342-14349.	6.6	313
6	$\langle i \rangle N \langle i \rangle$ -Annulated Perylene as An Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 265-272.	6.6	283
7	An Airâ€Stable Copper Reagent for Nucleophilic Trifluoromethylthiolation of Aryl Halides. Angewandte Chemie - International Edition, 2013, 52, 1548-1552.	7.2	281
8	Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State?. Journal of the American Chemical Society, 2012, 134, 14913-14922.	6.6	256
9	Enantioselective Synthesis of Chiral Allenoates by Guanidine-Catalyzed Isomerization of 3-Alkynoates. Journal of the American Chemical Society, 2009, 131, 7212-7213.	6.6	246
10	Copper-Mediated C–H Activation/C–S Cross-Coupling of Heterocycles with Thiols. Journal of Organic Chemistry, 2011, 76, 8999-9007.	1.7	230
11	Stable Tetrabenzo-Chichibabin's Hydrocarbons: Tunable Ground State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance Forms. Journal of the American Chemical Society, 2012, 134, 14513-14525.	6.6	218
12	Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Applied Catalysis B: Environmental, 2017, 216, 59-69.	10.8	199
13	Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy, 2016, 25, 42-50.	8.2	187
14	Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, e2200180.	11.1	184
15	Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Science Advances, 2020, 6, .	4.7	182
16	Highâ€Sulfurâ€Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small, 2016, 12, 5530-5537.	5.2	177
17	Asymmetric Mannich Reaction of Fluorinated Ketoesters with a Tryptophanâ€Đerived Bifunctional Thiourea Catalyst. Angewandte Chemie - International Edition, 2009, 48, 7604-7607.	7.2	176
18	A new class of PN3-pincer ligands for metal–ligand cooperative catalysis. Coordination Chemistry Reviews, 2015, 293-294, 116-138.	9.5	172

#	Article	IF	CITATIONS
19	Catalytic Mechanisms of Direct Pyrrole Synthesis via Dehydrogenative Coupling Mediated by PNP-Ir or PNN-Ru Pincer Complexes: Crucial Role of Proton-Transfer Shuttles in the PNP-Ir System. Journal of the American Chemical Society, 2014, 136, 4974-4991.	6.6	171
20	Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar's Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 2013, 135, 18229-18236.	6.6	167
21	Soluble and Stable Heptazethrenebis(dicarboximide) with a Singlet Open-Shell Ground State. Journal of the American Chemical Society, 2011, 133, 11896-11899.	6.6	162
22	Direct Asymmetric Vinylogous Aldol Reaction of Allyl Ketones with Isatins: Divergent Synthesis of 3â€Hydroxyâ€2â€Oxindole Derivatives. Angewandte Chemie - International Edition, 2013, 52, 6666-6670.	7.2	158
23	High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 2018, 13, 345-350.	15.6	157
24	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.	5.8	142
25	Cooperative Effect of Silver in Copper-Catalyzed Trifluoromethylation of Aryl Iodides Using Me ₃ SiCF ₃ . Organometallics, 2011, 30, 3229-3232.	1.1	139
26	Synthesis of a Chiral Quaternary Carbon Center Bearing a Fluorine Atom: Enantio―and Diastereoselective Guanidineâ€Catalyzed Addition of Fluorocarbon Nucleophiles. Angewandte Chemie - International Edition, 2009, 48, 3627-3631.	7.2	138
27	Pentanidium-Catalyzed Enantioselective Phase-Transfer Conjugate Addition Reactions. Journal of the American Chemical Society, 2011, 133, 2828-2831.	6.6	135
28	Chloride ion-catalyzed generation of difluorocarbene for efficient preparation of gem-difluorinated cyclopropenes and cyclopropanes. Chemical Communications, 2011, 47, 2411-2413.	2.2	133
29	Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale, 2015, 7, 10974-10981.	2.8	133
30	Remote Câ^'H Activation of Quinolines through Copperâ€Catalyzed Radical Crossâ€Coupling. Chemistry - an Asian Journal, 2016, 11, 882-892.	1.7	130
31	Niâ€"Sn-Supported ZrO ₂ Catalysts Modified by Indium for Selective CO ₂ Hydrogenation to Methanol. ACS Omega, 2018, 3, 3688-3701.	1.6	130
32	Highly Enantio―and Diastereoselective Reactions of γ‧ubstituted Butenolides Through Direct Vinylogous Conjugate Additions. Angewandte Chemie - International Edition, 2012, 51, 10069-10073.	7.2	124
33	Enhanced Reactivities toward Amines by Introducing an Imine Arm to the Pincer Ligand: Direct Coupling of Two Amines To Form an Imine Without Oxidant. Organometallics, 2012, 31, 5208-5211.	1.1	123
34	Perylene-Fused BODIPY Dye with Near-IR Absorption/Emission and High Photostability. Organic Letters, 2011, 13, 632-635.	2.4	119
35	Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy and Environmental Science, 2021, 14, 1194-1246.	15.6	119
36	Highly enantioselective construction of tertiary thioethers and alcohols via phosphine-catalyzed asymmetric Î ³ -addition reactions of 5H-thiazol-4-ones and 5H-oxazol-4-ones: scope and mechanistic understandings. Chemical Science, 2015, 6, 4912-4922.	3.7	117

3

#	Article	IF	Citations
37	Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 32, 470-478.	8.2	116
38	Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector. ACS Energy Letters, 2021, 6, 4390-4394.	8.8	115
39	Perylene Anhydride Fused Porphyrins as Near-Infrared Sensitizers for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 3652-3655.	2.4	113
40	The Direct Asymmetric Vinylogous Aldol Reaction of Furanones with αâ€Ketoesters: Access to Chiral γâ€Butenolides and Glycerol Derivatives. Angewandte Chemie - International Edition, 2011, 50, 1861-1864.	7.2	113
41	Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an <i>N,N</i> ′-Diimine Ligand. Inorganic Chemistry, 2017, 56, 438-445.	1.9	107
42	<scp>l</scp> -Threonine-Derived Novel Bifunctional Phosphineâ^'Sulfonamide Catalyst-Promoted Enantioselective Aza-Moritaâ^'Baylisâ^'Hillman Reaction. Organic Letters, 2011, 13, 1310-1313.	2.4	105
43	Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes. Nature Communications, 2018, 9, 611.	5.8	105
44	Dearomatization of 3â€Nitroindoles by a Phosphineâ€Catalyzed Enantioselective [3+2] Annulation Reaction. Angewandte Chemie - International Edition, 2019, 58, 5427-5431.	7.2	105
45	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016, 138, 1065-1077.	6.6	103
46	All-Carbon Quaternary Stereocenters \hat{l}_{\pm} to Azaarenes via Radical-Based Asymmetric Olefin Difunctionalization. Journal of the American Chemical Society, 2020, 142, 19451-19456.	6.6	101
47	Low overpotential and high current CO2 reduction with surface reconstructed Cu foam electrodes. Nano Energy, 2016, 27, 121-129.	8.2	100
48	Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water. Environmental Science & Environmenta	4.6	99
49	Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chemistry, 2018, 20, 2027-2037.	4.6	99
50	Continuous electrical pumping membrane process for seawater lithium mining. Energy and Environmental Science, 2021, 14, 3152-3159.	15.6	98
51	Selective Hydrogen Generation from Formic Acid with Wellâ€Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN ³ â€Pincer Ligand. Chemistry - an Asian Journal, 2016, 11, 1357-1360.	1.7	94
52	Stepwise Cyanation of Naphthalene Diimide for n-Channel Field-Effect Transistors. Organic Letters, 2012, 14, 2964-2967.	2.4	92
53	Benzene-fused BODIPYs: synthesis and the impact of fusion mode. Chemical Communications, 2013, 49, 1217.	2.2	92
54	<i>N</i> -Annulated Perylene Fused Porphyrins with Enhanced Near-IR Absorption and Emission. Organic Letters, 2010, 12, 4046-4049.	2.4	91

#	Article	IF	Citations
55	PN ³ (P)-Pincer Complexes: Cooperative Catalysis and Beyond. ACS Catalysis, 2019, 9, 1619-1629.	5 . 5	88
56	Anthracene-Fused BODIPYs as Near-Infrared Dyes with High Photostability. Organic Letters, 2011, 13, 6026-6029.	2.4	85
57	Primary Amine/CSA Ion Pair: A Powerful Catalytic System for the Asymmetric Enamine Catalysis. Organic Letters, 2011, 13, 2638-2641.	2.4	83
58	Tunable Selectivity for Electrochemical CO ₂ Reduction by Bimetallic Cu–Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis, 2021, 11, 11103-11108.	5.5	82
59	Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN3P ruthenium pincer complex under base-free Conditions. Journal of Organometallic Chemistry, 2012, 700, 202-206.	0.8	81
60	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	5.2	81
61	Superâ€heptazethrene. Angewandte Chemie - International Edition, 2016, 55, 8615-8619.	7.2	79
62	Bisindeno-annulated pentacenes with exceptionally high photo-stability and ordered molecular packing: simple synthesis by a regio-selective Scholl reaction. Chemical Communications, 2015, 51, 3604-3607.	2.2	78
63	Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chemical Science, 2020, 11, 5434-5440.	3.7	78
64	Formic Acid to Power towards Lowâ€Carbon Economy. Advanced Energy Materials, 2022, 12, .	10.2	77
65	Thiophene-Fused Tetracene Diimide with Low Band Gap and Ambipolar Behavior. Organic Letters, 2011, 13, 5960-5963.	2.4	76
66	Hydrogenation of Esters Catalyzed by Ruthenium PN ³ -Pincer Complexes Containing an Aminophosphine Arm. Organometallics, 2014, 33, 4152-4155.	1.1	74
67	Molecular Dynamics Simulations on Gate Opening in ZIF-8: Identification of Factors for Ethane and Propane Separation. Langmuir, 2013, 29, 8865-8872.	1.6	73
68	<i>meso</i> -Substituted Bisanthenes as Soluble and Stable Near-infrared Dyes. Journal of Organic Chemistry, 2010, 75, 856-863.	1.7	72
69	Cyanated Diazatetracene Diimides with Ultrahigh Electron Affinity for <i>n</i> -Channel Field Effect Transistors. Organic Letters, 2013, 15, 1194-1197.	2.4	72
70	Bis-N-annulated Quaterrylenebis(dicarboximide) as a New Soluble and Stable Near-Infrared Dye. Organic Letters, 2009, 11, 4508-4511.	2.4	71
71	Soluble and Stable Zethrenebis(dicarboximide) and Its Quinone. Organic Letters, 2010, 12, 4690-4693.	2.4	71
72	Dianthraceno[a,e]pentalenes: synthesis, crystallographic structures and applications in organic field-effect transistors. Chemical Communications, 2015, 51, 503-506.	2.2	70

#	Article	IF	CITATIONS
73	Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent. Tetrahedron, 2012, 68, 2527-2531.	1.0	69
74	A kinetically blocked 1,14:11,12-dibenzopentacene: a persistent triplet diradical of a non-Kekul \tilde{A} © polycyclic benzenoid hydrocarbon. Chemical Science, 2014, 5, 1908.	3.7	69
7 5	An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Chemistry - an Asian Journal, 2020, 15, 937-946.	1.7	68
76	A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C–S coupling. Chemical Science, 2012, 3, 2388.	3.7	67
77	Metal–Ligand Cooperative Reactivity in the (Pseudo)-Dearomatized PN ^{<i>x</i>} (P) Systems: The Influence of the Zwitterionic Form in Dearomatized Pincer Complexes. Journal of the American Chemical Society, 2017, 139, 13442-13449.	6.6	63
78	Carbon Dioxide Reduction by Pincer Rhodium Î-2-Dihydrogen Complexes:Â Hydrogen-Binding Modes and Mechanistic Studies by Density Functional Theory Calculations. Organometallics, 2007, 26, 508-513.	1.1	62
79	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	3.7	62
80	Highly Enantio†and Diastereoselective Synthesis of βâ€Methylâ€Î³â€monofluoromethylâ€Substituted Alcohols. Chemistry - A European Journal, 2011, 17, 8066-8070.	1.7	61
81	Theoretical Mechanistic Investigation into Metal-Free Alternating Copolymerization of CO ₂ and Epoxides: The Key Role of Triethylborane. Macromolecules, 2018, 51, 5600-5607.	2.2	61
82	Enantioselective Protonation of Itaconimides with Thiols and the Rotational Kinetics of the Axially Chiral CN Bond. Chemistry - an Asian Journal, 2009, 4, 1741-1744.	1.7	60
83	Cyclopentadienyl Molybdenum(II/VI) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Reactivity under Oxidative Conditions. Organometallics, 2010, 29, 1924-1933.	1.1	60
84	Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nature Communications, 2020, 11 , 3287.	5.8	60
85	Zâ€Shaped Pentalenoâ€Acene Dimers with High Stability and Small Band Gap. Angewandte Chemie - International Edition, 2016, 55, 2693-2696.	7.2	59
86	Lateral Extension of π Conjugation along the Bay Regions of Bisanthene through a Diels–Alder Cycloaddition Reaction. Chemistry - A European Journal, 2011, 17, 14672-14680.	1.7	57
87	Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al ₂ O ₃ Sol–Gel Coating. ACS Omega, 2019, 4, 13972-13980.	1.6	57
88	A Soluble and Stable Quinoidal Bisanthene with NIR Absorption and Amphoteric Redox Behavior. Organic Letters, 2009, 11, 4854-4857.	2.4	56
89	Diverse catalytic reactivity of a dearomatized PN ³ P*â€"nickel hydride pincer complex towards CO ₂ reduction. Chemical Communications, 2018, 54, 11395-11398.	2.2	56
90	Fastâ€Response, Highly Airâ€Stable, and Waterâ€Resistant Organic Photodetectors Based on a Singleâ€Crystal Pt Complex. Advanced Materials, 2020, 32, e1904634.	11.1	56

#	Article	IF	Citations
91	<i>meso</i> â€Ester and Carboxylic Acid Substituted BODIPYs with Farâ€Red and Nearâ€Infrared Emission for Bioimaging Applications. Chemistry - A European Journal, 2014, 20, 2301-2310.	1.7	55
92	Asymmetric NHC-Catalyzed Aza-Diels–Alder Reactions: Highly Enantioselective Route to α-Amino Acid Derivatives and DFT Calculations. Organic Letters, 2014, 16, 3872-3875.	2.4	54
93	The Insignificant Role of Dry Reforming of Methane in CO ₂ Emission Relief. ACS Energy Letters, 2020, 5, 2881-2885.	8.8	54
94	Efficient S _N 2 Fluorination of Primary and Secondary Alkyl Bromides by Copper(I) Fluoride Complexes. Organometallics, 2013, 32, 6587-6592.	1.1	50
95	Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus $\hat{a}\in \text{``Nitrogen PN} \cdot \text{Sup} \cdot \hat{a}\in \text{``Pincer Ligand Containing a Phenanthroline Backbone. ACS Catalysis, 2017, 7, 4446-4450.}$	5.5	50
96	Unusual Activity of Rationally Designed Cobalt Phosphide/Oxide Heterostructure Composite for Hydrogen Production in Alkaline Medium. ACS Nano, 2022, 16, 3906-3916.	7.3	50
97	Homolysis of Weak Tiâ^O Bonds:Â Experimental and Theoretical Studies of Titanium Oxygen Bonds Derived from Stable Nitroxyl Radicals. Journal of the American Chemical Society, 2005, 127, 3807-3816.	6.6	49
98	Conversion of CO ₂ from air into formate using amines and phosphorus-nitrogen PN ^{P-Ru(<scp>ii</scp>) pincer complexes. Green Chemistry, 2018, 20, 4201-4205.}	4.6	49
99	Synthesis and molecular structure of titanium complexes containing a reduced TEMPO radical. Chemical Communications, 2002, , 502-503.	2.2	46
100	<i>>para</i> à€Quinodimethaneâ€Bridged Perylene Dimers and Pericondensed Quaterrylenes: The Effect of the Fusion Mode on the Ground States and Physical Properties. Chemistry - A European Journal, 2014, 20, 11410-11420.	1.7	46
101	N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 8428-8434.	5.2	46
102	Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Organic Letters, 2018, 20, 6430-6435.	2.4	46
103	Aromaticity in catalysis: metal ligand cooperation <i>via</i> ligand dearomatization and rearomatization. Chemical Communications, 2021, 57, 3070-3082.	2.2	46
104	Optically and Electrocatalytically Decoupled Si Photocathodes with a Porous Carbon Nitride Catalyst for Nitrogen Reduction with Over 61.8% Faradaic Efficiency. Advanced Materials, 2021, 33, e2100812.	11.1	46
105	Homocoupling of benzyl halides catalyzed by POCOP–nickel pincer complexes. Tetrahedron, 2012, 68, 6152-6157.	1.0	45
106	Benzo[4,5]cyclohepta[1,2-b]fluorene: an isomeric motif for pentacene containing linearly fused five-, six- and seven-membered rings. Chemical Science, 2016, 7, 6176-6181.	3.7	45
107	Doubly and Triply Linked Porphyrinâ [^] Perylene Monoimides as Near IR Dyes with Large Dipole Moments and High Photostability. Journal of Organic Chemistry, 2011, 76, 661-664.	1.7	44
108	Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions. Tetrahedron Letters, 2012, 53, 4409-4412.	0.7	44

#	Article	IF	Citations
109	Stable 7,14-Disubstituted-5,12-Dithiapentacenes with Quinoidal Conjugation. Organic Letters, 2014, 16, 3966-3969.	2.4	44
110	A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. Chemical Communications, 2015, 51, 7610-7613.	2.2	44
111	Synthesis of Highly Reactive Polyisobutylene Catalyzed by EtAlCl ₂ /Bis(2-chloroethyl) Ether Soluble Complex in Hexanes. Macromolecules, 2014, 47, 1959-1965.	2.2	43
112	<i>N</i> -Annulated Perylene-Based Push–Pull-Type Sensitizers. Organic Letters, 2015, 17, 724-727.	2.4	43
113	Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure. Journal of Organic Chemistry, 2016, 81, 2911-2919.	1.7	43
114	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	6.6	42
115	Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines. Chemical Communications, 2011, 47, 3897.	2.2	41
116	The origin of enantioselectivity in the l-threonine-derived phosphine–sulfonamide catalyzed aza-Morita–Baylis–Hillman reaction: effects of the intramolecular hydrogen bonding. Organic and Biomolecular Chemistry, 2013, 11, 4818.	1.5	41
117	Towards <i>meso</i> àêEster BODIPYs with Aggregationâ€Induced Emission Properties: The Effect of Substitution Positions. Chemistry - an Asian Journal, 2015, 10, 1631-1634.	1.7	41
118	Cyclometalated Iridium–PhanePhos Complexes Are Active Catalysts in Enantioselective Allene–Fluoral Reductive Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters. Journal of the American Chemical Society, 2019, 141, 2087-2096.	6.6	41
119	Highly Enantio- and Diastereoselective Allylic Alkylation of Morita–Baylis–Hillman Carbonates with Allyl Ketones. Journal of Organic Chemistry, 2013, 78, 5067-5072.	1.7	40
120	Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Advanced Materials, 2017, 29, 1605826.	11.1	40
121	Spatially isolated palladium in porous organic polymers by direct knitting for versatile organic transformations. Journal of Catalysis, 2017, 355, 101-109.	3.1	40
122	Asymmetric Threeâ€Component Heck Arylation/Amination of Nonconjugated Cyclodienes. Angewandte Chemie - International Edition, 2020, 59, 5341-5345.	7.2	40
123	Dendritic micro–mesoporous composites with center-radial pores assembled by TS-1 nanocrystals to enhance hydrodesulfurization activity of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2020, 384, 136-146.	3.1	40
124	Coordination Chemistry of Stable Radicals:Â Homolysis of a Titaniumâ^'Oxygen Bond. Journal of the American Chemical Society, 2002, 124, 8200-8201.	6.6	39
125	Polymerization of 1,3-butadiene catalyzed by pincer cobalt(II) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands. Applied Catalysis A: General, 2013, 464-465, 35-42.	2.2	39
126	Indolo[2,3-b]carbazoles with tunable ground states: how Clar's aromatic sextet determines the singlet biradical character. Chemical Science, 2014, 5, 4944-4952.	3.7	39

#	Article	IF	Citations
127	Ethylene polymerization by PN3-type pincer chromium(III) complexes. Journal of Molecular Catalysis A, 2014, 395, 100-107.	4.8	39
128	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	2.2	39
129	Synthesis of <i>cis</i> - and <i>trans</i> -Diisothiocyanatoâ^Bis(NHC) Complexes of Nickel(II) and Applications in the Kumadaâ^Corriu Reaction. Organometallics, 2010, 29, 3746-3752.	1.1	38
130	Benzo-thia-fused [n]thienoacenequinodimethanes with small to moderate diradical characters: the role of pro-aromaticity versus anti-aromaticity. Chemical Science, 2016, 7, 3036-3046.	3.7	38
131	Metal and Ligand K-edge XAS of Titaniumâ^'TEMPO Complexes:  Determination of Oxidation States and Insights into Tiâ~'O Bond Homolysis. Inorganic Chemistry, 2006, 45, 4468-4477.	1.9	37
132	Tetrakis(4-tert-butylphenyl) substituted and fused quinoidal porphyrins. Chemical Communications, 2012, 48, 7684.	2.2	37
133	Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes. Tetrahedron, 2012, 68, 9949-9953.	1.0	36
134	Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene. Angewandte Chemie - International Edition, 2015, 54, 14412-14416.	7.2	36
135	Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis. Synthesis, 2016, 48, 3449-3458.	1.2	36
136	Renewable aromatics from the degradation of polystyrene under mild conditions. Journal of Saudi Chemical Society, 2017, 21, 983-989.	2.4	36
137	Singleâ€Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid. ChemSusChem, 2018, 11, 3591-3598.	3.6	36
138	Thienoaceneâ€Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2015, 21, 2019-2028.	1.7	35
139	Preparation and Activity of Copper–Gallium Nanocomposite Catalysts for Carbon Dioxide Hydrogenation to Methanol. Industrial & Engineering Chemistry Research, 2019, 58, 21331-21340.	1.8	35
140	Electronic effects of ruthenium-catalyzed [3+2]-cycloaddition of alkynes and azides. Tetrahedron, 2010, 66, 9415-9420.	1.0	34
141	Controlled polymerization of isoprene promoted by a type of hemilabile Xî€PN ³ (X = O, S) ligand supported cobalt(<scp>ii</scp>) complexes: the role of a hemilabile donor on the level of control. Polymer Chemistry, 2017, 8, 1805-1814.	1.9	34
142	Carbon-to-Metal Hydrogen Atom Transfer:Â Direct Observation Using Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2005, 127, 15684-15685.	6.6	33
143	Lewis Base Catalyzed Enantioselective Allylic Hydroxylation of Morita–Baylis–Hillman Carbonates with Water. Journal of Organic Chemistry, 2011, 76, 6894-6900.	1.7	33
144	A Green Approach to Ethyl Acetate: Quantitative Conversion of Ethanol through Direct Dehydrogenation in a Pd–Ag Membrane Reactor. Chemistry - A European Journal, 2012, 18, 15940-15943.	1.7	33

#	Article	IF	CITATIONS
145	Bipodal Surface Organometallic Complexes with Surface N-Donor Ligands and Application to the Catalytic Cleavage of C–H and C–C Bonds in n-Butane. Journal of the American Chemical Society, 2013, 135, 17943-17951.	6.6	33
146	Kinetic Evidence of an Apparent Negative Activation Enthalpy in an Organocatalytic Process. Scientific Reports, 2013, 3, 2557.	1.6	33
147	Synthesis of Copper Hydroxide Branched Nanocages and Their Transformation to Copper Oxide. Journal of Physical Chemistry C, 2014, 118, 19374-19379.	1.5	33
148	Câ€"H and Hâ€"H bond activation via ligand dearomatization/rearomatization of a PN ^{P-rhodium(<scp>i</scp>) complex. Dalton Transactions, 2015, 44, 15111-15115.}	1.6	33
149	Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction. Organic Letters, 2015, 17, 4168-4171.	2.4	33
150	Chlorine-functionalized keto-enamine-based covalent organic frameworks for CO ₂ separation and capture. CrystEngComm, 2018, 20, 7621-7625.	1.3	33
151	Structural Screening and Design of Dendritic Micro–Mesoporous Composites for Efficient Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Applied Materials & Interfaces, 2020, 12, 40404-40414.	4.0	32
152	Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates. Tetrahedron Letters, 2012, 53, 6646-6649.	0.7	31
153	Copper-catalyzed trifluoromethylation of arylsulfinate salts using an electrophilic trifluoromethylation reagent. Tetrahedron, 2013, 69, 2628-2632.	1.0	30
154	Synthesis of highly reactive polyisobutylene with FeCl ₃ /ether complexes in hexane; kinetic and mechanistic studies. Polymer Chemistry, 2015, 6, 322-329.	1.9	30
155	Catalytic Asymmetric Formal [3+2] Cycloaddition of Azoalkenes with 3-Vinylindoles: Synthesis of 2,3-Dihydropyrroles. IScience, 2020, 23, 100873.	1.9	30
156	Selective formation of bicyclic guanidinium chloride complexes: implication of the bifunctionality of guanidines. Tetrahedron Letters, 2009, 50, 1560-1562.	0.7	29
157	$\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene-Catalyzed Diastereoselective Vinylogous Michael Addition Reaction of \hat{I}^3 -Substituted Deconjugated Butenolides. Journal of Organic Chemistry, 2015, 80, 12606-12613.	1.7	28
158	Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus–nitrogen PN ⁻³ -pincer cobalt(<scp>ii</scp>) complexes. Dalton Transactions, 2016, 45, 19399-19407.	1.6	28
159	Enabling CO Insertion into <i>o</i> -Nitrostyrenes beyond Reduction for Selective Access to Indolin-2-one and Dihydroquinolin-2-one Derivatives. ACS Catalysis, 2018, 8, 10340-10348.	5.5	28
160	Incorporating TCNQ into Thiophene-Fused Heptacene for n-Channel Field Effect Transistor. Organic Letters, 2012, 14, 2786-2789.	2.4	27
161	Synthesis and characterization of bisoxazolines- and pybox-copper(<scp>ii</scp>) complexes and their application in the coupling of î±-carbonyls with functionalized amines. Organic and Biomolecular Chemistry, 2014, 12, 5509-5516.	1.5	27
162	Push–pull type porphyrin based sensitizers: The effect of donor structure on the light-harvesting ability and photovoltaic performance. Dyes and Pigments, 2015, 122, 199-205.	2.0	27

#	Article	IF	Citations
163	Direct Asymmetric Allylic Alkenylation of <i>N</i> ltaconimides with Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2012, 77, 6600-6607.	1.7	26
164	Room temperature hydrogen generation from hydrolysis of ammonia–borane over an efficient NiAgPd/C catalyst. International Journal of Hydrogen Energy, 2014, 39, 20031-20037.	3.8	26
165	Tunable regioselectivity in 1,3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl)pyridine incorporated transition metal (Cr, Fe and Co) catalysts. Journal of Molecular Catalysis A, 2015, 406, 78-84.	4.8	26
166	Auto-combustion synthesis and characterization of perovskite-type LaFeO3 nanocrystals prepared via different routes. Ceramics International, 2019, 45, 16530-16539.	2.3	26
167	Understanding Halide Counterion Effects in Enantioselective Ruthenium-Catalyzed Carbonyl (α-Aryl)allylation: Alkynes as Latent Allenes and Trifluoroethanol-Enhanced Turnover in The Conversion of Ethanol to Higher Alcohols via Hydrogen Auto-transfer. Journal of the American Chemical Society. 2021. 143. 16709-16717.	6.6	25
168	Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization. Inorganica Chimica Acta, 2015, 436, 132-138.	1.2	24
169	A class of effective decarboxylative perfluoroalkylating reagents: [(phen) ₂ Cu](O ₂ CR _F). Dalton Transactions, 2016, 45, 8468-8474.	1.6	24
170	Selective decarbonylation by a pincer PCP-rhodium(I) complex. Inorganica Chimica Acta, 2008, 361, 3327-3331.	1.2	23
171	Synthesis of morpholine or piperazine derivatives through gold-catalyzed cyclization reactions of alkynylamines or alkynylalcohols. Organic Chemistry Frontiers, 2015, 2, 721-725.	2.3	23
172	A Novel heteroleptic paddlewheel diruthenium bicyclic guanidinate complex: Synthesis, structure, and scope. Dalton Transactions, 2010, 39, 723-725.	1.6	22
173	Superâ€heptazethrene. Angewandte Chemie, 2016, 128, 8757-8761.	1.6	22
174	π-Conjugated oligothiophene–anthracene co-oligomers: synthesis, physical properties, and self-assembly. Journal of Materials Chemistry, 2009, 19, 8202.	6.7	21
175	Trifluoromethyl acting as stopper in [2]rotaxane. Chemical Communications, 2012, 48, 4821.	2.2	21
176	Asymmetric H–D exchange reactions of fluorinated aromatic ketones. Chemical Communications, 2012, 48, 5479.	2.2	21
177	Pro-aromatic bisphenaleno-thieno [3,2-b] thiophene versus anti-aromatic bisindeno-thieno [3,2-b] thiophene: different ground-state properties and applications in field-effect transistors. Chemical Communications, 2015, 51, 13178-13180.	2.2	21
178	Electrocatalytic Reduction of Carbon Dioxide with a Wellâ€Defined PN ³ â^'Ru Pincer Complex. ChemPlusChem, 2016, 81, 166-171.	1.3	21
179	A Pseudodearomatized PN ³ P*Ni–H Complex as a Ligand and Ĭƒ-Nucleophilic Catalyst. Journal of Organic Chemistry, 2018, 83, 14969-14977.	1.7	21
180	Selective conversion of polystyrene into renewable chemical feedstock under mild conditions. Waste Management, 2018, 78, 871-879.	3.7	21

#	Article	IF	Citations
181	Metathetic Oxidation of 2-Butenes to Acetaldehyde by Molecular Oxygen Using the Single-Site Olefin Metathesis Catalyst (≡SiO) ₂ Mo(â•O) ₂ . ACS Catalysis, 2018, 8, 7549-7555.	5.5	21
182	Electrochemical Conversion of CO ₂ to 2-Bromoethanol in a Membraneless Cell. ACS Energy Letters, 2019, 4, 600-605.	8.8	21
183	Density Functional Theory Calculations of Tiâ^'TEMPO Complexes:Â Influence of Ancillary Ligation on the Strength of the Tiâ^'O Bond. Organometallics, 2006, 25, 3317-3323.	1.1	20
184	Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates. Journal of Fluorine Chemistry, 2013, 151, 50-57.	0.9	20
185	Enantioselective Organocatalyzed Oxaâ€Michael–Aldol Cascade Reactions: Construction of Chiral 4 <i>H</i> i>ation 4 <io>H</io> 4 <io>H</io> 4 <io>H</io> 4 <io>H</io> 5 4 <io>H Advanced 5 Bynthesis and Catalysis, 2015, 357, 967-973.</io>	2.1	20
186	Monomeric nickel hydroxide stabilized by a sterically demanding phosphorus–nitrogen PN ^{P-pincer ligand: synthesis, reactivity and catalysis. Dalton Transactions, 2018, 47, 16057-16065.}	1.6	20
187	Growth of 2H stacked WSe ₂ bilayers on sapphire. Nanoscale Horizons, 2019, 4, 1434-1442.	4.1	20
188	Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS Applied Materials & Diphosphide (2019, 11, 20752-20761).	4.0	20
189	Diffusion as a function of guest molecule length and functionalization in flexible metal–organic frameworks. Materials Horizons, 2016, 3, 355-361.	6.4	19
190	Synthesis and Characterization of Branched <i>fcc</i> / <i>hcp</i> Ruthenium Nanostructures and Their Catalytic Activity in Ammonia Borane Hydrolysis. Crystal Growth and Design, 2018, 18, 1509-1516.	1.4	19
191	Kinetics and Thermodynamics of Small Molecule Binding to Pincer-PCP Rhodium(I) Complexes. Inorganic Chemistry, 2013, 52, 4160-4172.	1.9	18
192	Nâ€Annulated Peryleneâ€Substituted and Fused Porphyrin Dimers with Intense Nearâ€Infrared Oneâ€Photon and Twoâ€Photon Absorption. Chemistry - A European Journal, 2015, 21, 3708-3715.	1.7	18
193	Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. Environmental Science & Emp; Technology, 2017, 51, 9403-9409.	4.6	18
194	PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2022, 611, 739-751.	5.0	18
195	Highly Twisted 1,2:8,9â€Dibenzozethrenes: Synthesis, Ground State, and Physical Properties. ChemPlusChem, 2014, 79, 1549-1553.	1.3	17
196	C–H and C–C Activation of n-Butane with Zirconium Hydrides Supported on SBA15 Containing N-Donor Ligands: [(≡SiNHâ⁻¹)(≡SiXâ⁻²)ZrH2], [(≡SiNHâ⁻¹)(≡SiXâ⁻²)ZrH], and[(≡SiNâ•)(≡SiXâ⁻²)ZrH] (X Organometallics, 2014, 33, 3320-3327.	= â.ʾi NHâ€	", â 7 Oâ^'). A
197	Role of keto–enol tautomerization in a chiral phosphoric acid catalyzed asymmetric thiocarboxylysis of meso-epoxide: a DFT study. Organic and Biomolecular Chemistry, 2015, 13, 10981-10985.	1.5	17
198	Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave. Arabian Journal of Chemistry, 2015, 8, 892-896.	2.3	17

#	Article	IF	CITATIONS
199	Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums. ACS Catalysis, 2017, 7, 2139-2144.	5.5	17
200	Structural analysis of transient reaction intermediate in formic acid dehydrogenation catalysis using two-dimensional IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12395-12400.	3.3	17
201	One-Pot Synthesis of <i>N</i> -(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere. Organic Letters, 2015, 17, 5630-5633.	2.4	16
202	Atomic-level organization of vicinal acid–base pairs through the chemisorption of aniline and derivatives onto mesoporous SBA15. Chemical Science, 2016, 7, 6099-6105.	3.7	16
203	Synthesis of group 10 metal complexes with a new unsymmetrical PN3P-pincer ligand through ligand post-modification: Structure and reactivity. Journal of Organometallic Chemistry, 2017, 845, 25-29.	0.8	16
204	Kinetic studies of the photoinduced formation of transition metal–dinitrogen complexes using time-resolved infrared and UV–vis spectroscopy. Coordination Chemistry Reviews, 2006, 250, 1681-1695.	9.5	15
205	Zâ€Shaped Pentalenoâ€Acene Dimers with High Stability and Small Band Gap. Angewandte Chemie, 2016, 128, 2743-2746.	1.6	15
206	Nitrogen atom transfer mediated by a new PN ³ P-pincer nickel core <i>via</i> a putative nitrido nickel intermediate. Chemical Communications, 2018, 54, 3940-3943.	2.2	15
207	Pt-confinement catalyst with dendritic hierarchical pores on excellent sulfur-resistance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Green Energy and Environment, 2022, 7, 324-333.	4.7	15
208	Efficient Synthesis of the Osâ^'Os Dimers [Cp(CO)2Os]2, [Cp*(CO)2Os]2, and [(iPr4C5H)(CO)2Os]2 and Computational Studies on the Relative Stabilities of Their Geometrical Isomers. Organometallics, 2006, 25, 2209-2215.	1.1	14
209	Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO. Journal of Organometallic Chemistry, 2014, 766, 79-85.	0.8	14
210	A potential role of a substrate as a base for the deprotonation pathway in Rh-catalysed C–H amination of heteroarenes: DFT insights. Dalton Transactions, 2016, 45, 7980-7985.	1.6	14
211	Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen Oâ•PN3-Pincer Cobalt Complex. Inorganic Chemistry, 2021, 60, 614-622.	1.9	14
212	H-Shaped Oligothiophenes with Low Band Gaps and Amphoteric Redox Properties. Organic Letters, 2010, 12, 5660-5663.	2.4	13
213	Quinoidal Oligo(9,10â€anthryl)s with Chainâ€Lengthâ€Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release. Chemistry - A European Journal, 2015, 21, 18724-18729.	1.7	13
214	Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by Nâ€Donor SBA15 Surface Ligands: A Solidâ€State NMR and DFT Study. Angewandte Chemie - International Edition, 2016, 55, 11162-11166.	7.2	13
215	N-Annulated perylene as a donor in cyclopentadithiophene based sensitizers: the effect of the linking mode. Journal of Materials Chemistry C, 2016, 4, 3709-3714.	2.7	13
216	Dimerization of Terminal Aryl Alkynes Catalyzed by Iron(II) Amine-Pyrazolyl Tripodal Complexes with $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Selectivity Controlled by $\langle i \rangle E E \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Selectivity Controlled by $\langle i \rangle E E \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Selectivity Controlled by $\langle i \rangle E E \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Selectivity Controlled by $\langle i \rangle E E \rangle E \langle i \rangle $	1.6	13

#	Article	IF	Citations
217	The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices. Organic Chemistry Frontiers, 2017, 4, 675-681.	2.3	12
218	Selective Production of Oxygenates from Carbon Dioxide Hydrogenation over a Mesoporousâ€Silicaâ€Supported Copperâ€Gallium Nanocomposite Catalyst. ChemCatChem, 2018, 10, 1360-136	59. ⁸	12
219	CO ₂ hydrogenation by phosphorus–nitrogen PN ³ P-pincer iridium hydride complexes: elucidation of the deactivation pathway. Dalton Transactions, 2019, 48, 12812-12816.	1.6	12
220	Nonoxidative Dehydrogenation of Methanol to Methyl Formate through Highly Stable and Reusable CuMgO-Based Catalysts. ACS Omega, 2019, 4, 1854-1860.	1.6	12
221	Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317, 123471.	3.4	12
222	Mechanism and Regioselectivity of Rh(III)-Catalyzed Intermolecular Annulation of Aryl-Substituted Diazenecarboxylates and Alkenes: DFT Insights. Organometallics, 2016, 35, 450-455.	1.1	11
223	Extending the Secondâ€Generation Phosphorus–Nitrogen PN ³ â€Pincer Ligand Family through Ligand Postâ€Modification. Journal of the Chinese Chemical Society, 2018, 65, 60-64.	0.8	11
224	Selective carbonylation of benzene to benzaldehyde using a phosphorus–nitrogen PN ³ P–rhodium(<scp>i</scp>) complex. Organic Chemistry Frontiers, 2019, 6, 721-724.	2.3	11
225	Solvent effects on high-pressure hydrogen gas generation by dehydrogenation of formic acid using ruthenium complexes. International Journal of Hydrogen Energy, 2019, 44, 28507-28513.	3.8	11
226	Hydrolysis of CpTiCl2(TEMPO) and its application on one-pot syntheses of CpTiCl(OR)2 complexes. Dalton Transactions, 2004, , 354.	1.6	10
227	Supramolecular nanotubes with high thermal stability: a rigidity enhanced structure transformation induced by electron-beam irradiation and heat. Journal of Materials Chemistry, 2007, 17, 2307.	6.7	10
228	Nâ€Heterocyclicâ€Carbeneâ€Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2â€(Trimethylsilyloxy)furan and Enones. Asian Journal of Organic Chemistry, 2015, 4, 1362-1365.	1.3	10
229	Editors' Choiceâ€"Growth of Layered WS ₂ Electrocatalysts for Highly Efficient Hydrogen Production Reaction. ECS Journal of Solid State Science and Technology, 2016, 5, Q3067-Q3071.	0.9	10
230	CO ₂ activation through silylimido and silylamido zirconium hydrides supported on N-donor chelating SBA15 surface ligands. Chemical Communications, 2016, 52, 2577-2580.	2.2	10
231	Mesoporous silica-supported V-substituted heteropoly acid for efficient selective conversion of glycerol to formic acid. Journal of Saudi Chemical Society, 2020, 24, 1-8.	2.4	10
232	One Pot Hydrogenation of Furfural to 2â€Methyl Tetrahydrofuran over Supported Mono―and Biâ€metallic Catalysts. ChemistrySelect, 2020, 5, 9590-9600.	0.7	10
233	Ancillary Ligand and Ketone Substituent Effects on the Rate of Ketone Insertion into Zrâ^'C Bonds of Zirconoceneâ^'1-Aza-1,3-diene Complexes. Organometallics, 2009, 28, 2938-2946.	1.1	9
234	A route to hydroxylfluorenes: TsOH-mediated condensation reactions of 1,3-diketones with propargylic alcohols. RSC Advances, 2012, 2, 7594.	1.7	9

#	ARTICLE Comparison of the One-Electron Oxidations of CO-Bridged vs Unbridged Bimetallic Complexes:	IF	CITATIONS
235	Electron-Transfer Chemistry of Os ₂ Cp ₂ (CO) ₄ and Os ₂ Cp* ₂ (Cp =) Tj ETQq1 1 0.784314 rgBT /C	Dvarlock 1	. ⊙ Tf 50 737
236	Organometallics, 2014, 33, 4716-4728. ZIF-8 gate tuning via terminal group modification: A computational study. Chemical Physics Letters, 2016, 658, 270-275.	1.2	9
237	The Importance of Metal–Ligand Cooperativity in the Phosphorus–Nitrogen PN ³ P Platform: A Computational Study on Mn-Catalyzed Pyrrole Synthesis. Organometallics, 2020, 39, 18-24.	1.1	9
238	Epitaxial Growth and Determination of Band Alignment of Bi ₂ Te ₃ –WSe ₂ Vertical van der Waals Heterojunctions. , 2020, 2, 1351-1359.		9
239	Asymmetric Threeâ€Component Heck Arylation/Amination of Nonconjugated Cyclodienes. Angewandte Chemie, 2020, 132, 5379-5383.	1.6	9
240	Redox-Neutral Imination of Alcohol with Azide: A Sustainable Alternative to the Staudinger/Aza-Wittig Reaction. ACS Catalysis, 2021, 11, 4071-4076.	5.5	9
241	Redox induced oxidative C–C coupling of non-innocent bis(heterocyclo)methanides. Dalton Transactions, 2021, 50, 16647-16659.	1.6	9
242	Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O–O bond. Polyhedron, 2013, 58, 106-114.	1.0	8
243	Palladium-catalyzed direct C–H arylations of dioxythiophenes bearing reactive functional groups: a step-economical approach for functional π-conjugated oligoarenes. Organic and Biomolecular Chemistry, 2015, 13, 8505-8511.	1.5	8
244	Surface-reconstructed Cu electrode via a facile electrochemical anodization-reduction process for low overpotential CO2 reduction. Journal of Saudi Chemical Society, 2017, 21, 708-712.	2.4	8
245	Inner-sphere electron transfer at the ruthenium-azo interface. Dalton Transactions, 2022, 51, 2547-2559.	1.6	8
246	TCNQ-embedded heptacene and nonacene: synthesis, characterization and physical properties. Organic and Biomolecular Chemistry, 2013, 11, 6285.	1.5	7
247	Computationally guided design of a new Rh catalyst for selective formic acid dehydrogenation: Validation with caution. International Journal of Hydrogen Energy, 2019, 44, 28421-28429.	3.8	7
248	Catalytic Diastereoselective Tandem Conjugate Addition–Elimination Reaction of Morita–Baylis–Hillman Câ€Adducts by CC Bond Cleavage. Chemistry - an Asian Journal, 2012, 7, 771-777	1.7	6
249	Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor. Journal of Membrane Science, 2016, 515, 212-218.	4.1	6
250	A New Role for CO ₂ : Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 2017, 50, 6752-6761.	2.2	6
251	Glaulactams A–C, daphniphyllum alkaloids from Daphniphyllum glaucescens. Scientific Reports, 2018, 8, 15417.	1.6	6
252	Importance of thorough conformational analysis in modelling transition metal-mediated reactions: Case studies on pincer complexes containing phosphine groups. Journal of Saudi Chemical Society, 2019, 23, 1206-1218.	2.4	6

#	Article	IF	CITATIONS
253	Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation., 2021, 1, 100008.		6
254	Synthesis, crystal structure and reactivity studies of iron complexes with pybox ligands. Inorganica Chimica Acta, 2014, 423, 320-325.	1.2	5
255	C–S Cross-Coupling Reactions Catalyzed by Recyclable Core-Shell Structured Copper/Cu2O Nanowires Under Ligand-Free Conditions. Journal of Molecular and Engineering Materials, 2015, 03, 1540001.	0.9	5
256	Theoretical model estimation of guest diffusion in metal–organic frameworks (MOFs). RSC Advances, 2015, 5, 70433-70438.	1.7	5
257	Interrogating the steric outcome during H2 heterolysis: in-plane steric effects in the regioselective protonation of the PN3P-pincer ligand. Dalton Transactions, 2019, 48, 12817-12821.	1.6	5
258	Bisacenaphthopyrazinoquinoxaline derivatives: synthesis, physical properties and applications as semiconductors for n-channel field effect transistors. Organic and Biomolecular Chemistry, 2013, 11, 5683.	1.5	4
259	Ligand-centered reactivity of a pseudo-dearomatized phosphorus-nitrogen PN ³ P* rhodium complex towards molecular oxygen at room temperature. Inorganic Chemistry Frontiers, 2020, 7, 2017-2022.	3.0	4
260	Efficient and chemoselective hydrogenation of aldehydes catalyzed by well-defined PN ³ â€"pincer manganese(<scp>ii</scp>) catalyst precursors: an application in furfural conversion. Chemical Communications, 2021, 57, 11815-11818.	2.2	4
261	Synthesis, Structure, and Polymerization Activity of a Titanium Complex with a Chelating [(Hydroxy-κO)amino-κN]phenolato(2Ⱂ)-κO Ligand. Helvetica Chimica Acta, 2006, 89, 1589-1595.	1.0	3
262	DFT mechanistic study of the selective terminal C–H activation of n -pentane with a tungsten allyl nitrosyl complex. Journal of Saudi Chemical Society, 2017, 21, 558-562.	2.4	3
263	Enhanced Reactivity of Aluminum Complexes Containing P-Bridged Biphenolate Ligands in Ring-Opening Polymerization Catalysis. Frontiers in Chemistry, 2018, 6, 607.	1.8	3
264	Mechanistic elucidation of the role of metal oxidation states in nickel mediated electrocatalytic coupling of benzyl halides. Green Synthesis and Catalysis, 2020, 1, 143-149.	3.7	3
265	A Career in Catalysis: Jean-Marie M. Basset. ACS Catalysis, 2022, 12, 4961-4977.	5.5	3
266	Dehydrogenation of formic acid mediated by a Phosphorus–Nitrogen PN3P-manganese pincer complex: Catalytic performance and mechanistic insights. International Journal of Hydrogen Energy, 2023, 48, 26559-26567.	3.8	3
267	The use of a well-defined surface organometallic complex as a probe molecule: $[(\hat{i}\in,SiO)TaVCl2Me2] shows different isolated silanol sites on the silica surface. Chemical Communications, 2014, 50, 11721-11723.$	2.2	2
268	N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones. Synthesis, 2015, 48, 79-84.	1.2	2
269	Chemistry of Anilido Phosphine Complexes of Nickel. Chemistry Letters, 2019, 48, 811-819.	0.7	2
270	Organic Semiconductors: Fastâ€Response, Highly Airâ€Stable, and Waterâ€Resistant Organic Photodetectors Based on a Singleâ€Crystal Pt Complex (Adv. Mater. 2/2020). Advanced Materials, 2020, 32, 2070015.	11.1	2

#	Article	IF	CITATIONS
271	Power to formic acid. , 2021, , 169-210.		2
272	Selective benzylic C _{sp3} â€"H bond activations mediated by a phosphorusâ€"nitrogen PN ^{P-nickel complex. Chemical Communications, 2022, 58, 1593-1596.}	2.2	2
273	Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by Nâ€Donor SBA15 Surface Ligands: A Solidâ€State NMR and DFT Study. Angewandte Chemie, 2016, 128, 11328-11332.	1.6	1
274	Beyond the PN 3 (P) system: Synthesis of nonâ€symmetrical PONNPâ€pincer ligands and a unique Ni–Ag bimetallic complex containing a short Ag–Ag distance. Journal of the Chinese Chemical Society, 2019, 66, 455-458.	0.8	1
275	Selective catalytic transformation of polystyrene into ethylbenzene over Fe-Cu-Co/Alumina. Journal of Saudi Chemical Society, 2020, 24, 345-350.	2.4	1
276	Alkyl substituted 4-N-oxazadisilinane cations: A new family of Si protic ionic liquids and its application on esterification reactions. Tetrahedron Letters, 2020, 61, 151941.	0.7	1
277	Synthesis and characterization of secondâ€generation phosphorusâ€nitrogen PN ³ Pâ€rhodium (i) pincer complexes <i>via</i> ligand postâ€modification. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1399-1407.	0.6	1
278	Pyrroles and Their Benzo Derivatives: Structure. , 2020, , .		0
279	Selective Conversion of Carbon Dioxide to Formate with High Current Densities. Journal of Molecular and Engineering Materials, 0, , 2150001.	0.9	0
280	Role of noble metal catalysts for transformation of bio-based platform molecules. , 2022, , 641-672.		0